Undergraduate Course

BEng Electronic Engineering

Now In Clearing
BEng Electronic Engineering

Overview

The details
Electronic Engineering
H610
October 2021
Full-time
3 years
Colchester Campus

The modern world depends upon electronics, from mobile phones and digital broadcasting, to GPS navigation and robotics; and it is electronic engineering which has driven these inventions and more. This is a subject where you can exercise your imagination, using skills from both traditional communications and digital systems to resolve existing problems, and to create new products.

On our course, you cover a wide spectrum of topics to help you become an electronics designer:

  • Mathematical skills and software tools for problem-solving in engineering
  • Wireless Communication technology
  • The building blocks of complex digital systems
  • Analogue systems and circuit techniques
  • Computer simulations

Our School is a community of scholars leading the way in technological research and development. Today’s electronic engineers are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top engineers, and our work is driven by creativity and imagination as well as technical excellence.

We are Top 25 for electronic engineering (The Times and Sunday Times Good University Guide 2020), and more than two-thirds of our research rated “world-leading” or “internationally excellent” (REF 2014).

You graduate as a creative, experimental, and focused engineer ready to explore further how electronics can impact the people and world around you.

Programming at Essex

Teaching someone to programme is about opening a door. In your first year at Essex you will study a module that introduces you to programming using C. We assess your ability to think in a programmatic way in the very first week of term and if you require additional support, we offer classes which will boost your skills and confidence with programming.

Professional accreditation

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partially meeting the academic requirement for registration as a Chartered Engineer.

Why we're great.
  • 92% of our School of Computer Science and Electronic Engineering students are in employment or further study (Graduate Outcomes 2020).
  • We are ranked 27th in the UK for Computer Science and Information Systems in the QS World University Rankings by Subject (2021).
  • Become part of the next generation of industry professionals and academic researchers to help drive the economy, and push the frontiers of knowledge.
THE Awards 2018 - Winner University of the Year

Study abroad

Your education extends beyond the university campus. We support you in expanding your education through offering the opportunity to spend a year or a term studying abroad at one of our partner universities. The four-year version of our degree allows you to spend the third year abroad or employed on a placement abroad, while otherwise remaining identical to the three-year course.

Studying abroad allows you to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised.

If you spend a full year abroad you'll only pay 15% of your usual tuition fee to Essex for that year. You won't pay any tuition fees to your host university

Placement year

Alternatively, you can spend your third year on a placement with an external organisation, as part of one of our placement year degrees. The learning outcomes associated with this programme focus on using the specialist technical skills acquired in the first two years of the course and developing communications skills with customers.

Students are provided with support to secure a placement. Recent placements undertaken by our students have been with ARM, Microsoft, Intel, Nestlé, British Aerospace, and the Rutherford Appleton Laboratory, as well a range of SME software and hardware companies.

If you complete a placement year you'll only pay 20% of your usual tuition fee to Essex for that year.

Our expert staff

We have been one of the leading electronics departments in the country throughout our history, and in recent years, our prolific research staff have contributed to some major breakthroughs.

We invented the world's first telephone based system for deaf people to communicate with each other in 1981, with cameras and display devices that were able to work within the limited telephone bandwidth. Our academics have also invented a streamlined protocol system for worldwide high speed optical communications.

Specialist facilities

  • We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
  • All computers are dual boot Windows 10 and Linux. Apple Mac Computers are dual boot MacOS and Windows 10
  • Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
  • Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OMNet++)
  • We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors.

Your future

Demand for electronics and telecommunications engineers is high; the IT and engineering sectors are growing at a rate that outstrips the supply of fresh talent.

The profession offers a range of careers from design and development to marketing, management, production engineering and applications engineering. An incredible 92% of our School of Computer Science and Electronic Engineering students are in employment or further study (Graduate Outcomes 2020). Graduates also find employment in other disciplines because of the highly numerate nature of the subject.

Our department has a large pool of external contacts, ranging from companies providing robots for the media industry, through vehicle diagnostics, to electronic system design and circuit design and manufacture, who work with us and our students to provide advice, placements and eventually graduate opportunities. Read more about computer science and electronic engineering career destinations here.

Our recent graduates have gone on to work for a wide range of high-profile companies including:

  • National Instruments
  • Circad Design Ltd
  • The McClaren Formula One Team
  • B&W Group
  • BT
  • IBM
  • Visa
  • Google

We also work with our University's Student Development Team to help you find out about further work experience, internships, placements, and voluntary opportunities.

Entry requirements

Clearing entry requirements

Specific entry requirements for this course in Clearing are not published here but for most of our degree courses you will need to hold a Level 3 qualification. If you are interested in applying and have already received your results, use our Clearing application form to apply for 2021 entry and find out if you are eligible. You will be asked to provide details of your qualifications and grades.

English language requirements

English language requirements for applicants whose first language is not English: IELTS 6.0 overall. Different requirements apply for second year entry, and specified component grades are also required for applicants who require a Tier 4 visa to study in the UK.

Other English language qualifications may be acceptable so please contact us for further details. If we accept the English component of an international qualification then it will be included in the information given about the academic levels listed above. Please note that date restrictions may apply to some English language qualifications

If you are an international student requiring a Tier 4 visa to study in the UK please see our immigration webpages for the latest Home Office guidance on English language qualifications.

If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.

Additional Notes

If you’re an international student, but do not meet the English language or academic requirements for direct admission to this degree, you could prepare and gain entry through a pathway course. Find out more about opportunities available to you at the University of Essex International College here.

Structure

Course structure

We offer a flexible course structure with a mixture of core/compulsory modules, and optional modules chosen from lists.

Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field. The course content is therefore reviewed on an annual basis to ensure our courses remain up-to-date so modules listed are subject to change.

Teaching and learning disclaimer

Following the impact of the pandemic, we made changes to our teaching and assessment to ensure our current students could continue with their studies uninterrupted and safely. These changes included courses being taught through blended delivery, normally including some face-to-face teaching, online provision, or a combination of both across the year.

The teaching and assessment methods listed show what is currently planned for 2021 entry; changes may be necessary if, by the beginning of this course, we need to adapt the way we’re delivering them due to the external environment, and to allow you to continue to receive the best education possible safely and seamlessly.

Components and modules explained

Components

Components are the blocks of study that make up your course. A component may have a set module which you must study, or a number of modules from which you can choose.

Each component has a status and carries a certain number of credits towards your qualification.

Status What this means
Core
You must take the set module for this component and you must pass. No failure can be permitted.
Core with Options
You can choose which module to study from the available options for this component but you must pass. No failure can be permitted.
Compulsory
You must take the set module for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Compulsory with Options
You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Optional
You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.

The modules that are available for you to choose for each component will depend on several factors, including which modules you have chosen for other components, which modules you have completed in previous years of your course, and which term the module is taught in.

Modules

Modules are the individual units of study for your course. Each module has its own set of learning outcomes and assessment criteria and also carries a certain number of credits.

In most cases you will study one module per component, but in some cases you may need to study more than one module. For example, a 30-credit component may comprise of either one 30-credit module, or two 15-credit modules, depending on the options available.

Modules may be taught at different times of the year and by a different department or school to the one your course is primarily based in. You can find this information from the module code. For example, the module code HR100-4-FY means:

HR 100  4  FY

The department or school the module will be taught by.

In this example, the module would be taught by the Department of History.

The module number. 

The UK academic level of the module.

A standard undergraduate course will comprise of level 4, 5 and 6 modules - increasing as you progress through the course.

A standard postgraduate taught course will comprise of level 7 modules.

A postgraduate research degree is a level 8 qualification.

The term the module will be taught in.

  • AU: Autumn term
  • SP: Spring term
  • SU: Summer term
  • FY: Full year 
  • AP: Autumn and Spring terms
  • PS: Spring and Summer terms
  • AS: Autumn and Summer terms

COMPONENT 01: CORE

Team Project Challenge
(15 CREDITS)

Our Team Project Challenge gives you the opportunity to develop a range of professional skills by working as part of a small student team on a specific project. The projects are research-based and incorporate the concepts of specifications, design, and implementation. You’ll learn about sustainability, project and time management, design, legal issues, health and safety, data analysis and presentation, team reporting, and self-evaluation. You’ll also develop skills such as critical thinking and problem solving, agility, leadership, collaboration across networks, and effective oral and written communication, as well as curiosity and imagination, all of which will enhance your knowledge, confidence and social skills necessary to innovate and succeed in a competitive global environment.

View Team Project Challenge on our Module Directory

COMPONENT 02: CORE

Mathematics for Engineers
(15 CREDITS)

You’ll be introduced to some key elements of mathematics that are essential to engineering. You'll develop your understanding through working on examples in class, and through practical laboratory-based exercises using the programming tool, MATLAB.

View Mathematics for Engineers on our Module Directory

COMPONENT 03: CORE

Intro to Programming with C
(15 CREDITS)

This module will provide you with an introduction to fundamental concepts of computer programming in the C language, which is particularly relevant to programming embedded systems and for electronic engineers.

View Intro to Programming with C on our Module Directory

COMPONENT 04: CORE

Network Fundamentals
(15 CREDITS)

This module introduces the fundamentals of networking including wiring and configuration of switches and routers and associated subnetting. Laboratory sessions give practical hands on experience in our purpose built networking lab. The module uses the Cisco CCNA exploration Network Fundamentals course which is the first of four Cisco courses that can be used to obtain a Cisco CCNA qualification and participants will gain the CCNA1 qualification whilst on this course.

View Network Fundamentals on our Module Directory

COMPONENT 05: CORE

Fundamentals of Digital Systems
(15 CREDITS)

Computers, embedded systems, and digital systems in general have become an essential part of most people's lives, whether directly or indirectly. The aim of this module is to introduce the software and hardware underpinnings of such systems at an introductory yet challenging level suitable for future computer scientists and engineers. Topics covered in the module include both top-view as well as bottom-view approaches to understanding digital computers. They range from the more theoretical (e.g., state machines, logic circuits, and von Neumann's architecture) to the more practical (e.g., how transistors produce binary signals, operating system functions, memory management, and common hardware devices). The module also includes problem solving classes in which a guided discussion of weekly exercises is aimed at giving the student an opportunity to consolidate his/her understanding of the topics involved. Upon completion of this module, students should have a good conceptual and practical understanding of the nature and architecture of digital computer systems and their components.

View Fundamentals of Digital Systems on our Module Directory

COMPONENT 06: CORE

Digital Electronic Systems
(15 CREDITS)

This module develops the fundamental concepts introduced in the Digital Systems Architecture. We examine how data are represented within digital systems, including floating point, 'text' and 'data' files, and how the conversions between internal and human-readable forms are performed. The design and applications of higher-level logic elements such as counters, registers and multiplexers are discussed, as well as the more general concept of the finite state machine and its design. Transmission of digital data between systems is introduced by examination of the RS232 protocol. Further, fundamental decisions on how such sources should be represented in digital format include sample rates and quantization accuracy are discussed. In the case of audio and video especially, the possibilities for signal processing and data compression are investigated

View Digital Electronic Systems on our Module Directory

COMPONENT 07: CORE

Foundations of Electronics I
(15 CREDITS)

This module is one of two concerned with scientific and engineering foundations on which electronics is based. All electronics components are based on physical principles that relate voltage, current flow and the storage or loss of energy. All the theory we need to learn about how circuits behave is based on the fact that electric charge cannot be created or destroyed, and that the energy of each electron just depends on where it is, and how fast it is moving. How charges move in materials depends on their crystal structures. From basic ideas, the main principles of electronics are built up so that they can be used in the wider study of electronics to solve problems.

View Foundations of Electronics I on our Module Directory

COMPONENT 08: CORE

Foundations of Electronics II
(15 CREDITS)

This module comprises the second half of our 1st year series on fundamentals of electronics. The module focuses on reactive circuits (i.e., circuits with capacitors and/or inductors), basic semiconductors (i.e., diodes and bipolar junction transistors), electromotive devices, and operational amplifiers. The overview of these devices includes more theoretical concepts (such as Faraday's and Lenz’s laws) as well as more practical topics such as their transient and steady state responses to step and sinusoidal inputs, using phasors for circuit analysis, applications in analogue filters, amplification with feedback, power supply units, and DC motors and generators. The module includes weekly problem solving classes in which calculation exercises are discussed and four weekly lab sessions in which more theoretical concepts are applied to implementation and testing of a DC power supply unit.

View Foundations of Electronics II on our Module Directory

COMPONENT 01: CORE

Team Project Challenge
(15 CREDITS)

This course covers the principles of project management, team working, communication, legal issues, finance, and company organisation. Working in small teams, students will go through the full project life-cycle of design, development and implementation, for a bespoke software requirement. In this course, students gain vital experience to enable them to enter the computer science/Electrical engineering workforce, with a degree backed by the British Computer Society, and by the Institute of Engineering and Technology.

View Team Project Challenge on our Module Directory

COMPONENT 02: CORE

Engineering Mathematics
(15 CREDITS)

Need to build on your mathematical knowledge? Want to apply mathematical skills to engineering? Study the fundamental mathematics for engineering, covering topics like integral transform theory, probability theory, and numerical integration. Gain experience of using Matlab software to understand and solve problems.

View Engineering Mathematics on our Module Directory

COMPONENT 03: CORE

Analogue Circuit Design
(15 CREDITS)

This module aims to develop an in-depth understanding of analogue systems and circuit techniques from the perspective of the design process. The module incorporates two major themes: The first is the circuit orientated theme aiming to engender both an intuitive understanding of simple circuit design and functionality.The second theme focuses on the more formal analysis and computer simulation techniques using equivalent circuit transistor models where key skills in numeracy and circuit simulation are developed and then used in the design, simulation and construction of oscillator circuits. The module is supported by laboratory-based assignments that investigate small signal amplifiers, and voltage-controlled oscillator design and applications.

View Analogue Circuit Design on our Module Directory

COMPONENT 04: CORE

Digital Systems Design
(15 CREDITS)

Digital systems are an important part of most electronic devices and systems. In this module students learn to design a small system using an industry-standard prototyping board based around a Xilinx FPGA. The module is laboratory based using Xilinx Computer-Aided Design (CAD) software and it builds on knowledge of digital circuits that students learn in CE161. Students learn how to design, and more importantly, how to debug and test a design, using laboratory test equipment, to convert an idea into working hardware.

View Digital Systems Design on our Module Directory

COMPONENT 05: CORE

Engineering Electromagnetics
(15 CREDITS)

Many modern electronic devices are high speed and are widely used in computers, communications, radars and various other electronic systems. This module deals with those aspects of electromagnetic necessary for fine engineering of high speed circuits, devices, antennas and systems and for interference mitigation.

View Engineering Electromagnetics on our Module Directory

COMPONENT 06: CORE

C Programming and Embedded Systems
(15 CREDITS)

The overall goal of this module is to provide you with an understanding of how programs are written in C (a computer programming language) to solve engineering problems. Learn how to program an embedded microprocessor in C and how to design embedded mircroprocessor systems as solutions to various problems. Explore the design input and output modules for an embedded system.

View C Programming and Embedded Systems on our Module Directory

COMPONENT 07: CORE

Signal Processing
(15 CREDITS)

This module provides you with a basic understanding of the analysis of linear systems and introduces you to filter design techniques for analogue signal processing. The Laplace transform and its application in circuit and system theory are introduced, together with the concepts of system transfer function and impulse response, and techniques for deriving the transfer function of a circuit. The steady-state response of systems to sinusoidal inputs is presented. Bode plotting techniques are covered, and the effects of feedback are investigated, and techniques for ensuring stability are discussed. Butterworth and Chebyshev filter approximations are introduced. After covering the concepts of frequency and impedance transformations, selected standard analysis and design techniques applied to low-pass, high-pass, band-pass and band-stop filters of both passive and active types are examined.

View Signal Processing on our Module Directory

COMPONENT 08: CORE WITH OPTIONS

Option from list
(15 CREDITS)

COMPONENT 01: CORE

Individual Capstone Project Challenge
(45 CREDITS)

The highlight of our undergraduate degree courses is the individual capstone project. This project module provides students with the opportunity to bring together all the skills they have gained during their degree and demonstrate that they can develop a product from the starting point of a single 1/2 page description, provided either by an academic member of staff or an external company. In all the student spends 450 hours throughout the academic year, reporting to their academic tutor, and in the case of company projects, to a company mentor. All projects are demonstrated to external companies on our Project Open Day.

View Individual Capstone Project Challenge on our Module Directory

COMPONENT 02: CORE

Advanced Embedded Systems Design
(15 CREDITS)

Embedded systems have become more pervasive and powerful to take on truly sophisticated functions in recent years. When facing with the rapid technical updating and complicated market requirements, the designers have to use advanced design techniques to deal with the complexity. In this module, you will gain the experience of full embedded system design process, and the fundamental knowledge on hardware components and real time programming. The hand-on practice helps your understanding of embedded system design process.

View Advanced Embedded Systems Design on our Module Directory

COMPONENT 03: CORE WITH OPTIONS

Option(s) from list
(30 CREDITS)

COMPONENT 04: CORE WITH OPTIONS

Option(s) from list
(30 CREDITS)

Placement

On a placement year you gain relevant work experience within an external business or organisation, giving you a competitive edge in the graduate job market and providing you with key contacts within the industry. The rest of your course remains identical to the three-year degree.

Year abroad

On your year abroad, you have the opportunity to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised. The rest of your course remains identical to the three-year degree.

Teaching

  • Courses are taught by a combination of lectures, laboratory work, assignments, and individual and group project activities
  • Group work
  • A significant amount of practical lab work will need to be undertaken for written assignments and as part of your learning

Assessment

  • In your first year, you will have exams before the start of term in January
  • You are assessed through a combination of written examinations and coursework
  • All our modules include a significant coursework element
  • You receive regular feedback on your progress through in-term tests

Fees and funding

Home/UK fee

£9,250

International fee

£19,670

EU students commencing their course in the 2021-22 academic year will be liable for the International fee.

Fees will increase for each academic year of study.

Home/UK fees and funding information

International fees and funding information

What's next

Open Days

Our events are a great way to find out more about studying at Essex. We run a number of Open Days throughout the year which enable you to discover what our campus has to offer. You have the chance to:

  • tour our campus and accommodation
  • find out answers to your questions about our courses, student finance, graduate employability, student support and more
  • meet our students and staff

Check out our Visit Us pages to find out more information about booking onto one of our events. And if the dates aren’t suitable for you, feel free to book a campus tour here.

2021 Open Days (Colchester Campus)

  • Saturday, August 14, 2021
  • Saturday, September 18, 2021
  • Saturday, October 23, 2021

How to apply during Clearing

Once you’ve checked that we have the right course for you, applying couldn’t be simpler. Fill in our quick and easy Clearing application form with as much detail as you can. We’ll then take a look and get back to you with a decision. There’s no need to call us to apply; just do it all online.

Find out more about Clearing

Interviews

We don’t interview all applicants during Clearing, however, we will only make offers for the following course after a successful interview:

  • BA Multimedia Journalism
  • BSc Nursing (Adult)
  • BSc Nursing (Mental Health)
  • BA Social Work

The interview allows our academics to find out more about you, and in turn you’ll be able to ask us any questions you might have. Further details will be emailed to you if you are shortlisted for interview.


Apply now
Colchester Campus

Visit Colchester Campus

Home to 15,000 students from more than 130 countries, our Colchester Campus is the largest of our three sites, making us one of the most internationally diverse campuses on the planet - we like to think of ourselves as the world in one place.

The Campus is set within 200 acres of beautiful parkland, located two miles from the historic town centre of Colchester – England's oldest recorded town. Our Colchester Campus is also easily reached from London and Stansted Airport in under one hour.

 

Virtual tours

If you live too far away to come to Essex (or have a busy lifestyle), no problem. Our 360 degree virtual tours allows you to explore our University from the comfort of your home. Check out our Colchester virtual tour and Southend virtual tour to see accommodation options, facilities and social spaces.

Exhibitions

Our staff travel the world to speak to people about the courses on offer at Essex. Take a look at our list of exhibition dates to see if we’ll be near you in the future.

At Essex we pride ourselves on being a welcoming and inclusive student community. We offer a wide range of support to individuals and groups of student members who may have specific requirements, interests or responsibilities.


Find out more

The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include, but are not limited to: strikes, other industrial action, staff illness, severe weather, fire, civil commotion, riot, invasion, terrorist attack or threat of terrorist attack (whether declared or not), natural disaster, restrictions imposed by government or public authorities, epidemic or pandemic disease, failure of public utilities or transport systems or the withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.

Related courses

Ask us a question
Ask us a question

Want to quiz us about your course? Got a question that just needs answering? Get in touch and we’ll do our best to email you back shortly.