Undergraduate Course

BSc Computer Games

BSc Computer Games

Overview

The details
Computer Games
G610
October 2022
Full-time
3 years
Colchester Campus

This is a degree in world-making. You craft stories, characters and plot in order to build imaginary worlds that a player can journey through. Our work is driven by creativity and imagination as well as technical excellence; at Essex you master both game design and computer programming, giving you total control over the worlds you want to create.

Our course gives you the skills to design and specify complex, non-trivial games through focusing on the following areas:

  • The mechanics of a game, including gameplay elements and the relationship with story
  • The concepts and techniques of computer game programming
  • Real and virtual worlds
  • Artificial intelligence behaviours for non-player characters
  • 2D and 3D graphic effects and game objects (e.g. weapon systems)

At the end of your course, you will be able to create the outline design specification for a computer game of your own design, and to implement a game using industry-standard techniques.

Our School is a community of scholars leading the way in technological research and development. Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our work is driven by creativity and imagination as well as technical excellence.

More than two-thirds of our research rated “world-leading” or “internationally excellent” (REF 2014).

Both for entertainment and for more serious purposes such as virtual reality training, computer games, gamification and games intelligences are increasingly important in today’s world.

Programming at Essex

Teaching someone to programme is about opening a door. In your first year at Essex you will study a module that introduces you to programming using Python. We assess your ability to think in a programmatic way in the very first week of term and if you require additional support, we offer classes which will boost your skills and confidence with programming.

Why we're great.
  • You join a community of scholars leading the way in technological research and development.
  • We are home to many of the world's top scientists and engineers in their field.
  • 92% of our School of Computer Science and Electronic Engineering students are in employment or further study (Graduate Outcomes 2020).
THE Awards 2018 - Winner University of the Year

Study abroad

Your education extends beyond the university campus. We support you in expanding your education through offering the opportunity to spend a year or a term studying abroad at one of our partner universities. The four-year version of our degree allows you to spend the third year abroad or employed on a placement abroad, while otherwise remaining identical to the three-year course.

Studying abroad allows you to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised.

If you spend a full year abroad you'll only pay 15% of your usual tuition fee to Essex for that year. You won't pay any tuition fees to your host university

Placement year

Alternatively, you can spend your third year on a placement with an external organisation, as part of one of our placement year degrees. The learning outcomes associated with this programme focus on using the specialist technical skills acquired in the first two years of the course and developing communications skills with customers.

Students are provided with support to secure a placement. Recent placements undertaken by our students have been with ARM, Microsoft, Intel, Nestlé, British Aerospace, and the Rutherford Appleton Laboratory, as well a range of SME software and hardware companies.

If you complete a placement year you'll only pay 20% of your usual tuition fee to Essex for that year.

Our expert staff

The University of Essex was the birthplace of the ‘virtual world’. Multi-User Dungeons (MUD) – multi-player, real-time virtual worlds – were created by our students, including Richard Bartle, who still teaches Computer Games here today. Richard was also included in Geek.com’s list of the most influential game developers of all time.

Our research staff also includes Dr Adrian Clark, who works on computer graphics and augmented reality.

Specialist facilities

  • We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
  • All computers are dual boot Windows 10 and Linux. Apple Mac Computers are dual boot MacOS and Windows 10
  • Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
  • Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OMNet++)
  • We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors.

Your future

We have many graduates in senior positions in the computer communications industry, as well recent graduates working in IT and computer companies. An incredible 92% of our School of Computer Science and Electronic Engineering students are in employment or further study (Graduate Outcomes 2020).

Our department has a large pool of external contacts, ranging from companies providing robots for the media industry, through vehicle diagnostics, to the transforming of unstructured data to cloud-based multidimensional data cubes, who work with us and our students to provide advice, placements and eventually graduate opportunities. Read more about computer science and electronic engineering career destinations here.

Our recent graduates have gone on to secure impressive roles, including as a Java/Actionscript Developer for Playtech and as an Associate Software Developer for Sky.

We also work with our University's Student Development Team to help you find out about further work experience, internships, placements, and voluntary opportunities.

“I had some of the best years of my life at Essex: a mixed bag full of joy, freedom and hard work. Since graduating, I have been running my own business which focuses on web and open source technologies. I still look back to some of the modules that I studied which help me in my business operations; studying at Essex changed the way I approach my work.”

Dlair Kadhem, BSc Computer Games and Information Technology, 2005

Entry requirements

UK entry requirements

GCSE: Mathematics C/4

A-levels: BBB

BTEC: DDM

IB: 30 points or three Higher Level certificates with 555, including Standard Level Mathematics/Maths Studies grade 4, if not taken at Higher Level.
We are also happy to consider a combination of separate IB Diploma Programmes at both Higher and Standard Level. Please note that Maths in the IB is not required if you have already achieved GCSE Maths at grade C/4 or above or 4 in IB Middle Years Maths. Exact offer levels will vary depending on the range of subjects being taken at higher and standard level, and the course applied for. Please contact the Undergraduate Admissions Office for more information.

From 2021, we will accept grade 4 in either Standard Level Mathematics: Analysis and Approaches or Standard Level Mathematics: Applications and Interpretation.

Access to HE Diploma: 45 Level 3 credits at Merit or above

Flexible offers
Eligible applicants that actively choose us as their firm choice will be able to take advantage of a flexible offer. This offer will specify alternative entry requirements than those published here so, if your final grades aren’t what you had hoped for, you could still secure a place with us. Visit our undergraduate application information page for more details.

International & EU entry requirements

We accept a wide range of qualifications from applicants studying in the EU and other countries. Get in touch with any questions you may have about the qualifications we accept. Remember to tell us about the qualifications you have already completed or are currently taking.

Sorry, the entry requirements for the country that you have selected are not available here. Please select your country page where you'll find this information.

English language requirements

English language requirements for applicants whose first language is not English: IELTS 6.0 overall. Different requirements apply for second year entry, and specified component grades are also required for applicants who require a Tier 4 visa to study in the UK.

Other English language qualifications may be acceptable so please contact us for further details. If we accept the English component of an international qualification then it will be included in the information given about the academic levels listed above. Please note that date restrictions may apply to some English language qualifications

If you are an international student requiring a Tier 4 visa to study in the UK please see our immigration webpages for the latest Home Office guidance on English language qualifications.

If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.

Additional Notes

If you’re an international student, but do not meet the English language or academic requirements for direct admission to this degree, you could prepare and gain entry through a pathway course. Find out more about opportunities available to you at the University of Essex International College here.

Structure

Course structure

We offer a flexible course structure with a mixture of core/compulsory modules, and optional modules chosen from lists.

Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field. The course content is therefore reviewed on an annual basis to ensure our courses remain up-to-date so modules listed are subject to change.

Teaching and learning disclaimer

Following the impact of the pandemic, we made changes to our teaching and assessment to ensure our current students could continue with their studies uninterrupted and safely. These changes included courses being taught through blended delivery, normally including some face-to-face teaching, online provision, or a combination of both across the year.

The teaching and assessment methods listed show what is currently approved for 2022 entry; changes may be necessary if, by the beginning of this course, we need to adapt the way we’re delivering them due to the external environment, and to allow you to continue to receive the best education possible safely and seamlessly.

Components and modules explained

Components

Components are the blocks of study that make up your course. A component may have a set module which you must study, or a number of modules from which you can choose.

Each component has a status and carries a certain number of credits towards your qualification.

Status What this means
Core
You must take the set module for this component and you must pass. No failure can be permitted.
Core with Options
You can choose which module to study from the available options for this component but you must pass. No failure can be permitted.
Compulsory
You must take the set module for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Compulsory with Options
You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Optional
You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.

The modules that are available for you to choose for each component will depend on several factors, including which modules you have chosen for other components, which modules you have completed in previous years of your course, and which term the module is taught in.

Modules

Modules are the individual units of study for your course. Each module has its own set of learning outcomes and assessment criteria and also carries a certain number of credits.

In most cases you will study one module per component, but in some cases you may need to study more than one module. For example, a 30-credit component may comprise of either one 30-credit module, or two 15-credit modules, depending on the options available.

Modules may be taught at different times of the year and by a different department or school to the one your course is primarily based in. You can find this information from the module code. For example, the module code HR100-4-FY means:

HR 100  4  FY

The department or school the module will be taught by.

In this example, the module would be taught by the Department of History.

The module number. 

The UK academic level of the module.

A standard undergraduate course will comprise of level 4, 5 and 6 modules - increasing as you progress through the course.

A standard postgraduate taught course will comprise of level 7 modules.

A postgraduate research degree is a level 8 qualification.

The term the module will be taught in.

  • AU: Autumn term
  • SP: Spring term
  • SU: Summer term
  • FY: Full year 
  • AP: Autumn and Spring terms
  • PS: Spring and Summer terms
  • AS: Autumn and Summer terms

COMPONENT 01: CORE

Team Project Challenge
(15 CREDITS)

Our Team Project Challenge gives you the opportunity to develop a range of professional skills by working as part of a small student team on a specific project. The projects are research-based and incorporate the concepts of specifications, design, and implementation. You’ll learn about sustainability, project and time management, design, legal issues, health and safety, data analysis and presentation, team reporting, and self-evaluation. You’ll also develop skills such as critical thinking and problem solving, agility, leadership, collaboration across networks, and effective oral and written communication, as well as curiosity and imagination, all of which will enhance your knowledge, confidence and social skills necessary to innovate and succeed in a competitive global environment.

View Team Project Challenge on our Module Directory

COMPONENT 02: CORE

Mathematics for Computing
(15 CREDITS)

The aim of this module is to cover fundamental mathematics for Computer Scientists. It does not assume A-level mathematics, and the emphasis and delivery will be on understanding the key concepts as they apply to Computer Science.

View Mathematics for Computing on our Module Directory

COMPONENT 03: CORE

Introduction to Programming
(15 CREDITS)

The aim of this module is to provide an introduction to the fundamental concepts of computer programming. After completing this module, students will be expected to be able to demonstrate an understanding of the basic principles and concepts that underlie the procedural programming model, explain and make use of high-level programming language features that support control, data and procedural abstraction. Also, they will be able to analyse and explain the behaviour of simple programs that incorporate standard control structures, parameterised functions, arrays, structures and I/O.

View Introduction to Programming on our Module Directory

COMPONENT 04: CORE

Object-Oriented Programming
(15 CREDITS)

Want to become a Java programmer? Topics covered in this module include control structures, classes, objects, inheritance, polymorphism, interfaces, file I/O, event handling, graphical components, and more. You will develop your programming skills in supervised lab sessions where help will be at hand should you require it.

View Object-Oriented Programming on our Module Directory

COMPONENT 05: CORE

Introduction to Databases
(15 CREDITS)

Databases are everywhere. They are employed in banking, production control and the stock market, as well as in scientific and engineering applications. For example, the Human Genome Project had the goal of mapping the sequence of chemical base pairs which make up human DNA. The result is a genome database. This module introduces the underlying principles of databases, database design and database systems. It covers the fundamental concepts of databases, and prepares the student for their use in commerce, science and engineering.

View Introduction to Databases on our Module Directory

COMPONENT 06: CORE

Web Development
(15 CREDITS)

The aim of this module is to provide students with an introduction to the principles and technology that underlie internet applications and the techniques used in the design and construction of web sites. Students showcase their skills by designing and building both client and server components of a data driven web site.

View Web Development on our Module Directory

COMPONENT 07: CORE

Network Fundamentals
(15 CREDITS)

This module introduces the fundamentals of networking including wiring and configuration of switches and routers and associated subnetting. Laboratory sessions give practical hands on experience in our purpose built networking lab. The module uses the Cisco CCNA exploration Network Fundamentals course which is the first of four Cisco courses that can be used to obtain a Cisco CCNA qualification and participants will gain the CCNA1 qualification whilst on this course.

View Network Fundamentals on our Module Directory

COMPONENT 08: CORE

Fundamentals of Digital Systems
(15 CREDITS)

Computers, embedded systems, and digital systems in general have become an essential part of most people's lives, whether directly or indirectly. The aim of this module is to introduce the software and hardware underpinnings of such systems at an introductory yet challenging level suitable for future computer scientists and engineers. Topics covered in the module include both top-view as well as bottom-view approaches to understanding digital computers. They range from the more theoretical (e.g., state machines, logic circuits, and von Neumann's architecture) to the more practical (e.g., how transistors produce binary signals, operating system functions, memory management, and common hardware devices). The module also includes problem solving classes in which a guided discussion of weekly exercises is aimed at giving the student an opportunity to consolidate his/her understanding of the topics involved. Upon completion of this module, students should have a good conceptual and practical understanding of the nature and architecture of digital computer systems and their components.

View Fundamentals of Digital Systems on our Module Directory

COMPONENT 01: CORE

Team Project Challenge
(15 CREDITS)

This course covers the principles of project management, team working, communication, legal issues, finance, and company organisation. Working in small teams, students will go through the full project life-cycle of design, development and implementation, for a bespoke software requirement. In this course, students gain vital experience to enable them to enter the computer science/Electrical engineering workforce, with a degree backed by the British Computer Society, and by the Institute of Engineering and Technology.

View Team Project Challenge on our Module Directory

COMPONENT 02: CORE

Application Programming
(15 CREDITS)

This module extends the students' knowledge and skills in object-oriented application programming by a treatment of further Java language principles and of important Application Programming Interfaces (APIs). The Java Collections API is explored in some more detail with emphasis on how to utilise these classes to best effect. A particular focus will be on the interaction with databases (e.g. via JDBC) and on writing secure applications.

View Application Programming on our Module Directory

COMPONENT 03: CORE

Data Structures and Algorithms
(15 CREDITS)

Data structures and algorithms lie at the heart of Computer Science as they are the basis for the efficient solution of programming tasks. In this module, students will study core algorithms and data structures, as well as being given an introduction to algorithm analysis and basic computability.

View Data Structures and Algorithms on our Module Directory

COMPONENT 04: CORE

Artificial Intelligence
(15 CREDITS)

Artificial intelligence will be a great driver of change in the coming decades. This module provides an introduction to three fundamental areas of artificial intelligence: search, knowledge representation, and machine learning. These underpin all more advanced areas of artificial intelligence and are of central importance to related fields such as computer games and robotics. Within each area, a range of methodologies and techniques are presented, with emphasis being placed on understanding their strengths and weaknesses and hence on assessing which is most suited to a particular task.

View Artificial Intelligence on our Module Directory

COMPONENT 05: CORE

Computer Game Design
(15 CREDITS)

Most players think that designing computer games must be easy. How hard can it be? Well, writing books and painting pictures is also “easy”, but would you want to read those books, hang those pictures on the wall – or play those games? This module can’t teach you how to design games, any more than a creative writing module can teach you to write novels or an oil painting module can teach you to paint portraits. What it can do is help people who want – who need – to design games to hit the ground running. Where you run after that is up to you!

View Computer Game Design on our Module Directory

COMPONENT 06: CORE

Computer Game Programming
(15 CREDITS)

This module adds game-specific techniques and material to the general-purpose programming abilities acquired previously. Topics include fundamental game classes and loops; working with 2D graphics, images and sound; collision detection, Game AI, particle effects, procedural content generation, physics engines and more. Students showcase their programming skills and creative flair by designing and implementing a 2D video game.

View Computer Game Programming on our Module Directory

COMPONENT 07: CORE

C++ Programming
(15 CREDITS)

The aim of this module is to provide an introduction to the C++ programming language. The contents covered by this module include basic concepts and features of C++ programming (e.g., operator overloading), C++ Standard Template Library, and inheritance, function overriding and exceptions.

View C++ Programming on our Module Directory

COMPONENT 08: CORE WITH OPTIONS

Option from list
(15 CREDITS)

COMPONENT 01: CORE

Individual Capstone Project Challenge
(45 CREDITS)

The highlight of our undergraduate degree courses is the individual capstone project. This project module provides students with the opportunity to bring together all the skills they have gained during their degree and demonstrate that they can develop a product from the starting point of a single 1/2 page description, provided either by an academic member of staff or an external company. In all the student spends 450 hours throughout the academic year, reporting to their academic tutor, and in the case of company projects, to a company mentor. All projects are demonstrated to external companies on our Project Open Day.

View Individual Capstone Project Challenge on our Module Directory

COMPONENT 02: CORE WITH OPTIONS

Option from list
(15 CREDITS)

COMPONENT 03: CORE

Virtual Worlds
(15 CREDITS)

Massively Multiplayer Online Role-Playing Games are the largest and most sophisticated computer games in existence. This extraordinary module – which is quite unlike any other in the School – covers their design, history, influence and artistry, and is delivered by one of the two individuals who co-invented the genre here at Essex University in the late 1970s. If you’re interested in game design in general and MMO design in particular, you’re not going to find a module quite like this anywhere else.

View Virtual Worlds on our Module Directory

COMPONENT 04: CORE

High-Level Games Development
(15 CREDITS)

This course covers the fundamentals of games development, with special emphasis on 3D games and the Unity Game Engine. In this practical course, with many code samples and exercises, you'll learn how to implement a complete 3D game in Unity, including all aspects of game development: User input, 3D models and animations, physics, camera, audio, lights, terrains, graphical user interfaces and artificial intelligence. No previous game development experience is needed, although having previous programming knowledge is strongly advised (all programming will be done in C#).

View High-Level Games Development on our Module Directory

COMPONENT 05: CORE WITH OPTIONS

Option from list
(15 CREDITS)

COMPONENT 06: CORE WITH OPTIONS

Option from list
(15 CREDITS)

Placement

On a placement year you gain relevant work experience within an external business or organisation, giving you a competitive edge in the graduate job market and providing you with key contacts within the industry. The rest of your course remains identical to the three-year degree.

Year abroad

On your year abroad, you have the opportunity to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised. The rest of your course remains identical to the three-year degree.

Teaching

  • Courses are taught by a combination of lectures, laboratory work, assignments, and individual and group project activities
  • Group work
  • A significant amount of practical lab work will need to be undertaken for written assignments and as part of your learning

Assessment

  • You are assessed through a combination of written examinations and coursework
  • All our modules include a significant coursework element
  • You receive regular feedback on your progress through in-term tests
  • In your first year, you will have exams before the start of term in January

Fees and funding

Home/UK fee

£9,250

International fee

£20,650

Fees will increase for each academic year of study.

Home/UK fees and funding information

International fees and funding information

What's next

Open Days

Our events are a great way to find out more about studying at Essex. We run a number of Open Days throughout the year which enable you to discover what our campus has to offer. You have the chance to:

  • tour our campus and accommodation
  • find out answers to your questions about our courses, student finance, graduate employability, student support and more
  • meet our students and staff

Check out our Visit Us pages to find out more information about booking onto one of our events. And if the dates aren’t suitable for you, feel free to book a campus tour here.

2021 Open Days (Colchester Campus)

  • Saturday, October 23, 2021
  • Saturday, November 13, 2021

Applying

Applications for our full-time undergraduate courses should be made through the Universities and Colleges Admissions Service (UCAS). Applications are online at: www.ucas.com. Full details on this process can be obtained from the UCAS website in the how to apply section.

Our UK students, and some of our EU and international students, who are still at school or college, can apply through their school. Your school will be able to check and then submit your completed application to UCAS. Our other international applicants (EU or worldwide) or independent applicants in the UK can also apply online through UCAS Apply.

The UCAS code for our University of Essex is ESSEX E70. The individual campus codes for our Loughton and Southend Campuses are 'L' and 'S' respectively.

You can find further information on how to apply, including information on transferring from another university, applying if you are not currently at a school or college, and applying for readmission on our How to apply and entry requirements page.

Applicant Days and interviews

If you are an undergraduate student who has received an offer from us to study with us from October 2021, you will be invited to attend a Virtual Applicant Day so that you can get to know us from the comfort of your own home. Our Virtual Applicant Days will run until June 2021 and give you the chance meet academics online from the department you’ve applied to, and attend live talks and Q&A’s on our Virtual Applicant Day platform.

Some of our courses also require a compulsory interview. If you have applied to one of these courses you will receive an invite to a Zoom interview via email, along with further details about the interview process.

Colchester Campus

Visit Colchester Campus

Home to 15,000 students from more than 130 countries, our Colchester Campus is the largest of our three sites, making us one of the most internationally diverse campuses on the planet - we like to think of ourselves as the world in one place.

The Campus is set within 200 acres of beautiful parkland, located two miles from the historic town centre of Colchester – England's oldest recorded town. Our Colchester Campus is also easily reached from London and Stansted Airport in under one hour.

 

Virtual tours

If you live too far away to come to Essex (or have a busy lifestyle), no problem. Our 360 degree virtual tours allows you to explore our University from the comfort of your home. Check out our Colchester virtual tour and Southend virtual tour to see accommodation options, facilities and social spaces.

Exhibitions

Our staff travel the world to speak to people about the courses on offer at Essex. Take a look at our list of exhibition dates to see if we’ll be near you in the future.

At Essex we pride ourselves on being a welcoming and inclusive student community. We offer a wide range of support to individuals and groups of student members who may have specific requirements, interests or responsibilities.


Find out more

The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include, but are not limited to: strikes, other industrial action, staff illness, severe weather, fire, civil commotion, riot, invasion, terrorist attack or threat of terrorist attack (whether declared or not), natural disaster, restrictions imposed by government or public authorities, epidemic or pandemic disease, failure of public utilities or transport systems or the withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.

Related courses

Ask us a question
Ask us a question

Want to quiz us about your course? Got a question that just needs answering? Get in touch and we’ll do our best to email you back shortly.