Clearing 2021
People

Dr Michael Barros

Lecturer
School of Computer Science and Electronic Engineering (CSEE)
Dr Michael Barros
  • Email

  • Location

    Colchester Campus

  • Academic support hours

    My Academic Support Hours will be 3:30-4:30pm every Monday via zoom. The zoom link for this is available from my profile on my CE221 course MOODLE page. Please wait in the waiting room until I can admit you.

Profile

Biography

Dr Barros is an Assistant Professor (Lecturer) since June 2020 in the School of Computer Science and Electronic Engineering at the University of Essex, UK. He received the PhD in Computer Science at the Waterford Institute of Technology in 2016. He previously held multiple academic positions as a Research Fellow in the Tampere University, Finland as well as the Waterford Institute of Technology, Ireland. He has over 70 research peer-reviewed scientific publications in top journals and conferences such as IEEE Transactions on Communications, IEEE Transactions on Vehicular Technology, in the areas of molecular and unconventional communications, biomedical engineering, bionano science and 6G. Since 2020, he is a review editor for the Frontiers in Communications and Networks journal in the area of unconventional communications. He also served as guest editor for the IEEE Transactions on Molecular, Biological and Multi-Scale Communications and Digital Communications Networks journals. He received the CONNECT Prof. Tom Brazil Excellence in Research Award in 2020. Dr Barros is awarded the European Commission's Marie Skłodowska-Curie Individual Fellowship (MSCA-IF) from 2019-2021, the Irish Research Council's (IRC) Government of Ireland Post-doc Fellow from 2016-2018 and the Enterprise Ireland's (EI) Commercialization Funding from 2018-2019, securing a total of €667k as a PI.

Qualifications

  • PhD in Computer Science Waterford Institute of Technology, (2016)

Appointments

University of Essex

  • Lecturer, University of Essex (1/6/2020 - present)

Research and professional activities

Research interests

Molecular Communications Communications for Unconventional Medical Devices

Molecular communciations is a recent interdisciplinary research area that integrates concepts from telecommunications and computer networks for the dual goal of 1) designing communication using molecules for synthetically engineered cells or unconventional implantable medical devices and 2) further analyse biological communications for deeper understanding of tissues and organs functioning. We have sucessfully designed communication system models using in-silico and in-vitro models of different types of biological systems including, neurons, astrocytes, smooth muscle cells, epithelial cells as well as bacteria. We work close with experimental in-vitro data in our in-silico models with the vision of developing validated digital twins solutions that one day can be translated to clinical practices.

Key words: molecular communications
Open to supervise

Biocomputing using Living Cells for Novel Precise Medicine Technology

The manipulation, or control, of tissues enables the possibility of further exploring novel activity patterns that derives new ways of tissue behaviour. Biocomputing can be derived from this vision, where we have proposed that the communication of cells can be optimitized in a way that performs Boolean logic gates. We have used different types of cells, by which we have succesfully achieve the obtention of logic gates functions in astrocytes, neurons and bacteria. We have developed both in-silico and in-vitro models that show such technology can be achieved. We have designed control and optimization models that range from control theory mathematical derivations to machine learning-based optimizations. Our plans for the future include the deep exploratory work that will answer how many logic gates and circuits can be obtained from this approach as well as what biological parameters should be consider to provide full optimised solutions that are safe to be implanted. We will also expand our analysis to derived in-vitro models that show the possible sensing and treatment technology that can emerge from biocomputing systems, where the vision is to provide more efficient and biocompatible solutions than existing biomedical devices.

Key words: biocomputing
Open to supervise

In-vivo Networking for Biomedical Distributed Interfaces

The large scale and long term implantation of unconventional medical systems depends on the distribution of the devices or externally controlled cells that produce a desired, but yet very precise, sensing or actuation in the body. This is only possible if these systems are communicating to each other as well as to the outside the body. We term this technology as in-vivo networking, which we consider as one of the stepping stones for the developed of the futuristic vision of the Internet of Bio-Nano Things. We have developed networking protocols for ultrasound-based communications between external and implantable devices. We focus on the manipulation of ultrasound signals to perform not only communication but to provide energy to bateryless implantable systems for neural interfaces, which is used as a sensing mechanism of biological neural networks powered by AI. We are now expading to multiple communication channels that can use ultrasound signals as well as optical and RF-mmWave. We are also further validating our models using 3D ex-vivo-based platforms testing how wireless signals can be changed to overcome signal losses and impedance mismatching towards high-bandwidth interfaces.

Key words: in vivo network
Open to supervise

Wireless Communications for Implantable Nano Devices

Open to supervise

Exosomes intra-body communications for targeted drug delivery

Open to supervise

Teaching and supervision

Current teaching responsibilities

  • C++ Programming (CE221)

  • Network Engineering (CE321)

  • Team Project Challenge (CS) (CE291)

  • Team Project Challenge (WBL) (CE299)

Publications

Journal articles (34)

Lenk, K., Genocchi, B., Barros, MT. and Hyttinen, JAK., (2021). Larger Connection Radius Increases Hub Astrocyte Number in a 3D Neuron-Astrocyte Network Model. IEEE Transactions on Molecular, Biological and Multi-Scale Communications. 7 (2), 1-1

Barros, MT., Doan, P., Kandhavelu, M., Jennings, B. and Balasubramaniam, S., (2021). Engineering calcium signaling of astrocytes for neural-molecular computing logic gates.. Scientific Reports. 11 (1), 595-

Bernal, SL., Celdrán, AH., Pérez, GM., Barros, MT. and Balasubramaniam, S., (2021). Security in Brain-Computer Interfaces. ACM Computing Surveys. 54 (1), 1-35

Bernal, SL., Celdrán, AH., Pérez, GM., Barros, MT. and Balasubramaniam, S., (2021). Security in Brain-Computer Interfaces: State-of-the-Art, Opportunities, and Future Challenges. ACM Computing Surveys. 54 (1)

Barros, MT., Veletic, M., Kanada, M., Pierobon, M., Vainio, S., Balasingham, I. and Balasubramaniam, S., (2021). Molecular Communications in Viral Infections Research: Modelling, Experimental Data and Future Directions. IEEE Transactions on Molecular, Biological and Multi-Scale Communications. 7 (3), 121-141

Borges, LF., Barros, MT. and Nogueira, M., (2021). Toward Reliable Intra-Body Molecular Communication: An Error Control Perspective. IEEE Communications Magazine. 59 (5), 114-120

Haselmayr, W., Hyttinen, J., Schafer, M., Femminella, M., Morris, RJ., Lenk, K., Noel, A. and Barros, MT., (2021). Special Issue—Advances in Molecular Communications: Theory, Experiment, and Application. IEEE Transactions on Molecular, Biological and Multi-Scale Communications. 7 (2), 69-72

Balasubramaniam, S., Barros, MT., Veletic, M., Kanada, M., Pierobon, M., Vainio, S. and Balasingham, I., (2021). Editorial—Special Issue on Molecular Communications for Diagnostics and Therapeutic Development of Infectious Diseases. IEEE Transactions on Molecular, Biological and Multi-Scale Communications. 7 (3), 117-120

Moioli, RC., Nardelli, PHJ., Barros, MT., Saad, W., Hekmatmanesh, A., Silva, PEG., de Sena, AS., Dzaferagic, M., Siljak, H., Van Leekwijck, W., Melgarejo, DC. and Latre, S., (2021). Neurosciences and Wireless Networks: The Potential of Brain-Type Communications and Their Applications. IEEE Communications Surveys & Tutorials. 23 (3), 1599-1621

Siljak, H., Ashraf, N., Barros, MT., Martins, DP., Butler, B., Farhang, A., Marchetti, N. and Balasubramaniam, S., (2021). Evolving Intelligent Reflector Surface Toward 6G for Public Health: Application in Airborne Virus Detection. IEEE Network, 1-7

Barros, MT., Velez, G., Arregui, H., Loyo, E., Sharma, K., Mujika, A. and Jennings, B., (2020). CogITS: cognition‐enabled network management for 5G V2X communication. IET Intelligent Transport Systems. 14 (3), 182-189

Veletic, M., Barros, MT., Arjmandi, H., Balasubramaniam, S. and Balasingham, I., (2020). Modeling of Modulated Exosome Release From Differentiated Induced Neural Stem Cells for Targeted Drug Delivery. IEEE Transactions on NanoBioscience. 19 (3), 357-367

Adonias, GL., Yastrebova, A., Barros, MT., Koucheryavy, Y., Cleary, F. and Balasubramaniam, S., (2020). Utilizing Neurons for Digital Logic Circuits: A Molecular Communications Analysis. IEEE Transactions on NanoBioscience. 19 (2), 224-236

Pengnoo, M., Barros, MT., Wuttisittikulkij, L., Butler, B., Davy, A. and Balasubramaniam, S., (2020). Digital Twin for Metasurface Reflector Management in 6G Terahertz Communications. IEEE Access. 8, 114580-114596

Bernal, SL., Celdran, AH., Maimo, LF., Barros, MT., Balasubramaniam, S. and Perez, GM., (2020). Cyberattacks on Miniature Brain Implants to Disrupt Spontaneous Neural Signaling. IEEE Access. 8, 152204-152222

Adonias, GL., Siljak, H., Barros, MT., Marchetti, N., White, M. and Balasubramaniam, S., (2020). Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits.. Frontiers in Computational Neuroscience. 14, 556628-

Martins, DP., Barros, MT. and Balasubramaniam, S., (2019). Quality and Capacity Analysis of Molecular Communications in Bacterial Synthetic Logic Circuits. IEEE Transactions on NanoBioscience. 18 (4), 628-639

Arregui, H., Mujika, A., Loyo, E., Velez, G., Barros, MT. and Otaegui, O., (2019). Short-Term Vehicle Traffic Prediction for Terahertz Line-of-Sight Estimation and Optimization in Small Cells. IEEE Access. 7, 144408-144424

Barros, MT., Siljak, H., Ekky, A. and Marchetti, N., (2019). A Topology Inference Method of Cortical Neuron Networks Based on Network Tomography and the Internet of Bio-Nano Things. IEEE Networking Letters. 1 (4), 142-145

Martins, DP., Barros, MT., Pierobon, M., Kandhavelu, M., Lio, P. and Balasubramaniam, S., (2018). Computational Models for Trapping Ebola Virus Using Engineered Bacteria. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 15 (6), 2017-2027

Martins, DP., Leetanasaksakul, K., Barros, MT., Thamchaipenet, A., Donnelly, W. and Balasubramaniam, S., (2018). Molecular Communications Pulse-Based Jamming Model for Bacterial Biofilm Suppression. IEEE Transactions on NanoBioscience. 17 (4), 533-542

Balasubramaniam, S., Wirdatmadja, SA., Barros, MT., Koucheryavy, Y., Stachowiak, M. and Jornet, JM., (2018). Wireless Communications for Optogenetics-Based Brain Stimulation: Present Technology and Future Challenges. IEEE Communications Magazine. 56 (7), 218-224

Barros, MT., Silva, W. and Regis, CDM., (2018). The Multi-Scale Impact of the Alzheimer’s Disease on the Topology Diversity of Astrocytes Molecular Communications Nanonetworks. IEEE Access. 6, 78904-78917

Barros, M. and Dey, S., (2018). Feed-forward and Feedback Control in Astrocytes for Ca2+-based Molecular Communications Nanonetworks. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 17 (4), 1-1

Barros, MT., (2017). Ca 2+ -signaling-based molecular communication systems: Design and future research directions. Nano Communication Networks. 11, 103-113

Barros, MT., Mullins, R. and Balasubramaniam, S., (2017). Integrated Terahertz Communication With Reflectors for 5G Small-Cell Networks. IEEE Transactions on Vehicular Technology. 66 (7), 5647-5657

Wirdatmadja, SA., Barros, MT., Koucheryavy, Y., Jornet, JM. and Balasubramaniam, S., (2017). Wireless Optogenetic Nanonetworks for Brain Stimulation: Device Model and Charging Protocols. IEEE Transactions on NanoBioscience. 16 (8), 859-872

Taynnan Barros, M., Balasubramaniam, S. and Jennings, B., (2015). Comparative End-to-End Analysis of Ca2+-Signaling-Based Molecular Communication in Biological Tissues. IEEE Transactions on Communications. 63 (12), 5128-5142

Barros, MT., Balasubramaniam, S. and Jennings, B., (2014). Using Information Metrics and Molecular Communication to Detect Cellular Tissue Deformation. IEEE Transactions on NanoBioscience. 13 (3), 278-288

Barros, MT., Balasubramaniam, S., Jennings, B. and Koucheryavy, Y., (2014). Transmission Protocols for Calcium-Signaling-Based Molecular Communications in Deformable Cellular Tissue. IEEE Transactions on Nanotechnology. 13 (4), 779-788

De Alencar, MS., Lins, PR. and Barros, MT., (2013). Stochastic analysis of the laser spectrum considering the phase noise effect. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 12 (SPEC. ISSUE 2), 57-65

Taynnan Barros, M., Cezar de Morais Gomes, R. and Fabiano Batista Ferreira da Costa, A., (2012). Routing Architecture for Vehicular Ad-Hoc Networks. IEEE Latin America Transactions. 10 (1), 1411-1419

Taynnan Barros, M., Ribeiro Lins, P. and Sampaio Alencar, M., (2012). Traffic Grooming for Clonal Selection Routing over Dynamically Wavelength-Routed Switched Networks. IEEE Latin America Transactions. 10 (1), 1435-1443

Barros, MT., Lins Junior, PR. and Alencar, MS., (2011). CSA: A Route Clonal Selection Algorithm for Dynamic WDM Networks. Journal of Communications Software and Systems. 7 (4), 121-121

Conferences (18)

Borges, LF., Barros, MT. and Nogueira, M., Modelo de Comunicação Molecular Multiportadora com Ruído Intracelular e Intercelular

Fonseca, B., Fonseca, C., Barros, M., White, M., Abhyankar, V., Borkholder, DA. and Balasubramaniam, S., (2021). Ultrasound-based Control of Micro-Bubbles for Exosome Delivery in Treating COVID-19 Lung Damage

Borges, LF., Barros, MT. and Nogueira, M., (2020). A Multi-Carrier Molecular Communication Model for Astrocyte Tissues

Veletić, M., Barros, MT., Balasingham, I. and Balasubramaniam, S., (2019). A Molecular Communication Model of Exosome-mediated Brain Drug Delivery

Guimarães, AM., de Carvalho, GIF., Silva Cruz, MDC., Lima, FS., Regis, CDM. and Barros, MT., (2019). Analyzing the effect of body temperature variation in maturation response time of B lymphocytes

Barros, MT., (2018). Capacity of the hierarchical multi-layered cortical microcircuit communication channel

Adonias, GL., Barros, MT., Doyle, L. and Balasubramaniam, S., (2018). Utilising EEG signals for modulating neural molecular communications

Benediktsson, JA., Dressler, F., Payne, GF., Juntti, M., Schober, R., Tentzeris, EM., Kokkoniemi, J., Balasingham, I., Jornet, JM., Han, C., Feng, L., Barros, M., Perli, S., Caleffi, M., Lehtomaki, J., Vegni, AM., Dinc, E., Cacciapuoti, AS., Kuscu, M., Sakkaff, Z., Akyildiz, IF., Balasubramaniam, S., Akan, OB., Pierobon, M., Nakano, T. and Armada, AG., (2018). ACM NANOCOM 2018: 5th ACM international conference on nanoscale computing and communication: Reykjavik, Iceland, September 5-7, 2018

Barros, MT. and Dey, S., (2017). Set point regulation of astrocyte intracellular Ca2+ signalling

Martins, DP., Barros, MT. and Balasubramaniam, S., (2016). Using Competing Bacterial Communication to Disassemble Biofilms

Barros, MT., Balasubramaniam, S., Jennings, B. and Koucheryavy, Y., (2014). Adaptive transmission protocol for molecular communications in cellular tissues

Barros, MT., Gomes, R., de Alencar, MS. and da Costa, AFBF., (2013). IP traffic classifiers applied to DiffServ networks

Barros, MT., Gomes, RC., De Alencar, MS. and Costa, AF., (2013). Feature filtering techniques applied in IP traffic classification

Barros, MT., Balasubramaniam, S. and Jennings, B., (2013). Error control for calcium signaling based molecular communication

Barros, MT., Gomes, R., Costa, A. and Wang, R., (2012). Evaluation of performance and scalability of routing protocols for VANETs on the Manhattan Mobility Model

Ribeiro, LP., Barros, MT. and de Alencar, MS., (2011). Performance of wavelength assignment heuristics in a dynamic optical network with adaptive routing and traffic grooming

Barros, M., Costa, A. and Gomes, R., (2010). GVDSR: A Dynamic Routing stategy for Vehicular Ad-hoc Networks

Barros, MT., Lins, PR. and Alencar, MS., (2010). Performance comparison between dynamic optical circuit switching and optical burst switching

Contact

m.barros@essex.ac.uk

Location:

Colchester Campus

Academic support hours:

My Academic Support Hours will be 3:30-4:30pm every Monday via zoom. The zoom link for this is available from my profile on my CE221 course MOODLE page. Please wait in the waiting room until I can admit you.