Event

CSEE Seminar Series: A Learning Approach to Wireless Information and Power Transfer

  • Wed 20 Feb 19

    16:00 - 18:00

  • Colchester Campus

    1N1.4.1

  • Event speaker

    Dr Morteza Varasteh

  • Event type

    Lectures, talks and seminars
    CSEE Seminar Series

  • Event organiser

    Computer Science and Electronic Engineering, School of

  • Contact details

    CSEE School Office

In wireless information and power transfer (WIPT) systems, the goal is to design waveforms that maximize the DC power at the output of the energy harvester (EH) as well as the information rate.

Unlike most of the WIPT systems with the linear model assumption for EH, for WIPT systems with nonlinear EH there exists a trade-off between the rate and delivered power. Although after applying some approximations, some interesting results have been derived, by and large, obtaining the exact optimal trade-off analytically has so far been unsuccessful due to the presence of nonlinear components in EH.

While designing WIPT signals and systems (under nonlinear assumptions for the EH) using analytical tools seems extremely cumbersome, Deep Learning (DL)-based methods reveal a promising alternative to tackle the aforementioned problems. In fact, DL-based methods, and particularly, autoencoder based structures have recently shown remarkable results in communications, achieving or even surpassing the performance of state-of-the-art algorithms.

In this talk, we look at DL-based methods in WIPT systems and signal design. We consider signal modulation design for a point-to-point WIPT over a noisy channel. In particular, we consider the WIPT system as an autoencoder structure, where the transmitter and receiver are considered as multi-layer Deep Neural Networks (DNN). 

CSEE Seminar Series: A Learning Approach to Wireless Information and Power Transfer

Dr Morteza Varasteh received his BSc degree in Electrical and Electronics Engineering from Tabriz University Iran in 2009, and his MSc degree in Communication Systems Engineering from Sharif University of Technology, Tehran, Iran, in 2011. During 2011-2013, he worked as an engineer in Zaeim Electronic Industries conducting a project on implementing the physical layer of IEEE 802.16. He received his Ph.D. degree in Communications from Imperial College London in 2016.

Morteza is currently a postdoctoral research associate in the Communications and Signal Processing group at Imperial College London. His research interests are in the general area of information theory, wireless communications, optimization theory and machine learning.

Related events