MA Public Opinion and Political Behaviour
BEng Electronic Engineering options

Final Year, Component 04

Option(s) from list
Computer Vision

Computer vision is the discipline that tries to understand the content of images and videos. It has an extraordinarily wide range of applications; well-known ones include inspection on production lines, reading number plates, mixing live and computer-generated action in movies, and recognising faces. However, researchers are working on applications such as driverless cars, building 3D models from photographs, robot navigation, gaming interfaces, and automated medical diagnosis -- in fact, whenever you as a human looks at the world and try to understand what you see is fair game for computer vision. This module introduces you to the principles of computer vision through a series of lectures and demonstrations. You have an opportunity to learn how to use these principles and algorithms on real-world vision problems in the associated laboratories using the industry-standard toolkit, OpenCV.

Large Scale Software Systems and Extreme Programming

The world demands software systems with ever increasing richness of behaviours and degrees of complexity. However, traditional software engineering techniques, which were inherited with relatively minor adaptations from other, older branches of engineering, have been struggling to scale up to the challenges posed by modern software systems. As a result, a large proportion (as much as a quarter!) of software projects based on traditional methods end up being cancelled at some point in their lifecycle, with many more being late, over budget and with less features than initially stipulated. In this module you will learn why traditional software engineering techniques fail, and you will become very familiar (through lectures, labs, videos and a large group project) with a novel set of techniques, known as Extreme Programming and Agile Software Development, which fundamentally solve these problems. In the last decade, these techniques have been so successful that today as many as 80% of all projects adopt agile methods.

Network Engineering

How do you configure Internet routing protocols for interconnecting WAN and LAN technologies? How suitable are WAN protocols within a modern communications infrastructure? Study the theories behind simulating and analysing network performance. Understand the fundamental principles behind contemporary network architecture and protocols, and evaluate why new protocols are created.

Network Security

How do you secure networked computers and systems? What are the methods you can apply to detect, mitigate and stop attacks? Examine common network security vulnerabilities and design computer network architectures that reduce risk. Study suitable security techniques and key management skills required for encrypted communication/authentication.

Mechatronic Design

This module gives a high-level view of the design process of mechatronics systems. It provides students with background knowledge on mechatronics and discusses applications and types of such systems. The module introduces and builds upon previous knowledge of relevant main components, such as sensors and actuators, and their operational characteristics. The students also get exposed to aspects of mechatronic design, such as dividing a system to subsystems, mechanical design through specialised software, control design, and designing against failure.

Telecommunication Principles

This module aims to provide you with a detailed description of the data link layer of telecommunications systems and its interface with the physical layer of these systems. It starts by using the OSI model to place these layers in the context of the entire telecommunication system. It then describes the principal methods for the quantitative description of link signals, which then enables the fundamental link layer transmission media to be described as well as of baseband transmission. A discussion of link layer flow control and error correction naturally leads to description of link layer protocols. Finally, the transmission of digital signals over analogue links and analogue signals over digital lines are discussed.

Telecommunication Networks and Systems

This module describes the fundamental principles of telecommunication systems and networks covering both radio-frequency/microwave (RF/MW) and optical fibre communications by a unified approach. In brief - the module content reflects at depth the full complexity of modern telecommunication field and what you as a future telecommunication professional need to know to succeed in your career choice. The module gives a comprehensive overview of modern and future telecommunication networks and an introduction to basic principles of information and its processing in communications, the main transmission and demodulation techniques of the information-carrying analogue and digital signals are considered in depth for RF/MW and optical systems. This provides an integral understanding of how modern communication systems operate at all levels from top to bottom, including  transmission system engineering, analysis of the effect of various impairments on the system performance, system development and optimisation. The module's focus on fundamental principles means that you as a future telecommunication or electronic engineer working in the communication area will be well-prepared to follow the changes which are taking place in this rapidly evolving field. In order to provide both good theoretical knowledge and strong applied skills, in addition to the lectures the module is supported by the problem solving classes.

Digital Signal Processing

This module aims at introducing students to digital processing techniques, including sampling and analysis of digital signals, signal conditioning, the design of digital filters, and digital signal processing applications. Discrete signals and systems are studied, with an emphasis on the Fourier and Z-transforms that are necessary for the analysis of discrete signals and design of digital filters.

High Level Digital Design

Digital systems are in virtually all devices we interact with: from consumer electronics, to biomedical applications and automotive industry. Digital technology is evolving so rapidly that engineers need rapid-prototyping software and hardware tools that allow them to explore and test an implementation before moving to the production. In this module, learners will gain fundamental circuit design and verification skills by using an industry-standard hardware description language (VHDL) to program field-programmable gate arrays (FPGAs). The learning process is experience-oriented so that hands-on practice in designing embedded systems as well as theoretical background is acquired during the course.

At Essex we pride ourselves on being a welcoming and inclusive student community. We offer a wide range of support to individuals and groups of student members who may have specific requirements, interests or responsibilities.

Find out more

The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include, but are not limited to: strikes, other industrial action, staff illness, severe weather, fire, civil commotion, riot, invasion, terrorist attack or threat of terrorist attack (whether declared or not), natural disaster, restrictions imposed by government or public authorities, epidemic or pandemic disease, failure of public utilities or transport systems or the withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications. The University would inform and engage with you if your course was to be discontinued, and would provide you with options, where appropriate, in line with our Compensation and Refund Policy.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.