Clearing 2021
MA Public Opinion and Political Behaviour
BSc Human Biology options

Year 2, Component 06

Option(s) from list
BS220-5-SP
Medical Genetics
(15 CREDITS)

5.5% of the population will have developed a genetic disorder by age 25. But how does genetic disease occur? From understanding the molecular basis of genetic disease, to the techniques used in NHS laboratories for diagnosis and screening for genetic disorders, you address the nature and inheritance of both single gene and complex genetic disease, and explore the effects of abnormalities in human chromosomes. Developments such as gene therapy, the 100,000 genomes project and manipulation of embryos will also be discussed.

BS222-5-AU
Genome Science
(15 CREDITS)

We are in the age of genomics and scientists have devised new technologies that can generate whole genome sequences in days which would once have taken years to achieve. Learn the high-throughput techniques of next-generation sequencing used to study genomes, the proteome and the interactome. Investigate how nucleotide sequences are analysed, applying the analytical tools used by research scientists and understand how new genes are discovered and their functions revealed. You also discover how our knowledge of gene structure is being applied in the emerging field of synthetic biology to create new organisms and modify existing ones by gene editing.

BS223-5-SP
Immunity in Health and Disease
(15 CREDITS)

Our bodies are under attack. So how do we defend ourselves against foreign invaders? Explore the anatomical and structural components of the immune system and assess what happens in the event of immunodysfunction. Utilising real-world case-studies (eg AIDS), and looking at specific examples (eg allergy and transplantation) you will review important aspects of clinical immunology and immuno-pathology, gaining an understanding of auto-immunity and immune-deficiencies. You will also consider the future of human immunology – evaluating how far vaccines can protect us against disease. Using the knowledge you have gained you will be able to identify areas of current immunology understanding that could lead to positive medical intervention.

BS228-5-SP
Metals in Biology
(15 CREDITS)

Assess the importance of zinc, copper and iron in biological systems and review how they are kept in stable equilibrium. Explore the structure and functions of proteins and enzymes that contain metal cofactors and discuss the diseases and possible treatments associated with both metal deficiency and overload.

BS230-5-AU
Proteins and Macromolecular Assemblies
(15 CREDITS)

Understanding the shape, structure and folding of proteins can provide the basis for drug targeting in disease processes and enable us to develop a better understanding of specific biological pathways. This module takes a look at particular macromolecular assemblies using the most up-to-date structural biological techniques with a particular emphasis on x-ray crystallography.

BS231-5-AU
Computational Data Analysis: R for Life Sciences
(15 CREDITS)

If we were to compile the DNA sequence of the human genome into a book, it would be 200,000 pages long, and would take 10 years to read. The ability to effectively interpret and analyse large-scale genetic and genomic data sets is a crucial skill for next-generation biologists. The module provides a basic introduction to R, the programming language of choice for biologists industry and academia. You learn to write scripts and functions, read and write data files in different formats, use basic plot functionalities and perform basic statistical analysis.

BS232-5-SP
Human Metabolism
(15 CREDITS)

We all know food is the fuel of life – but how do our bodies turn the things we put on our plate into the energy we need to function? Study the processes that coordinate metabolism of proteins, lipids and carbohydrates, paying particular attention to organ specialisation, hormonal control, metabolic homeostasis and appetite and body weight. The consequences of disturbances to metabolism will also be discussed.

BS281-5-SP
Protein Bioinformatics
(15 CREDITS)

Bioinformatics have become an indispensable skill for the next generation of biochemists and biologists in order to retrieve, analyse and interpret data. You will learn how to access, search and extract data from publicly available protein databases, and analyse and display results using appropriate software.

PS411-5-SP
Brain and Behaviour
(15 CREDITS)

The brain is an extremely complex organ, and there is much that we still have to learn about its processes and functions. This module will detail the psychological mechanisms that underlie human behaviour and highlight the possibility that even our deepest thoughts and feelings arise from electrical and chemical activity in our brains.

At Essex we pride ourselves on being a welcoming and inclusive student community. We offer a wide range of support to individuals and groups of student members who may have specific requirements, interests or responsibilities.


Find out more

The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include, but are not limited to: strikes, other industrial action, staff illness, severe weather, fire, civil commotion, riot, invasion, terrorist attack or threat of terrorist attack (whether declared or not), natural disaster, restrictions imposed by government or public authorities, epidemic or pandemic disease, failure of public utilities or transport systems or the withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.