Component

MA Public Opinion and Political Behaviour
Integrated Master in Mathematics: Mathematics options

Year 3, Component 04

Options from list
MA220-6-AU
Number Theory
(15 CREDITS)

Number theory encompasses some of the most classical and important topics in mathematics, stemming from the study of integers, Diophantine equations, prime numbers and modular arithmetic. As well as introducing each of these, in this module it will be demonstrated how techniques from a range of mathematical disciplines such as algebra and geometry can be brought to bear.

MA225-6-SP
Quantum Mechanics
(15 CREDITS)

University of Essex enjoy breaking away from tradition. In this module you will break from “classical physics” and gain a conceptual understanding in quantum physics. You will develop skills in solving quantum mechanical problems associated with atomic and molecular systems.

MA301-6-SP
Group Theory
(15 CREDITS)

Group theory is the study of symmetries, which are the actions that rotate polyhedrons such as the cube and they permeate science at large, playing an important role in physics (such as the standard model of particle physics ), chemistry (molecules, crystals, materials science…), cryptography or even music! In this module you will learn advanced constructions and techniques in modern group theory, with special emphasis on the study of finite groups.

MA305-6-AU
Nonlinear Programming
(15 CREDITS)

How do you apply an algorithm or numerical method to a problem? What are the advantages? And the limitations? Understand the theory and application of nonlinear programming. Learn the principles of good modelling and know how to design algorithms and numerical methods. Critically assess issues regarding computational algorithms.

MA306-6-AU
Combinatorial Optimisation
(15 CREDITS)

In this module you will learn what underpins the algorithms used where variables are integer and apply these algorithms to solve integer and mixed integer problems with cutting-plane algorithms.

MA307-6-AU
Advanced Ordinary Differential Equations and Dynamical Systems
(15 CREDITS)

The subject of Ordinary Differential Equations (ODEs) is a very important and fascinating branch in mathematics. An abundance of phenomena in physics, biology, engineering, chemistry, finance and neuroscience to name a few, may be described and studied using such equations. The module will introduce you to advanced topics and theories in ODEs and dynamical systems.

MA314-6-SP
Graph Theory
(15 CREDITS)

Examine key definitions, proofs and proof techniques in graph theory. Gain experience of problems connected with chromatic number. Understand external graph theory, Ramsey theory and the theory of random graphs.

MA315-6-SP
Cryptography and Codes
(15 CREDITS)

How do standard coding techniques in computer security work? And how does RSA cryptography work? Examine the principles of cryptography and the mathematical principles of discrete coding. Analsye the concepts of error detection and correction. Understand the algebra and number theory used in modern cryptography and coding schemes.

MA316-6-AU
Commutative Algebra
(15 CREDITS)

Commutative algebra is the cornerstone established by Hilbert to give a formal backing to intuitive arguments in geometry. This module will provide you with a solid foundation of commutative rings and module theory, as well as help developing foundational notions helpful in other areas such as number theory, algebraic geometry, and homological algebra. Examples will be key, many of them will be made ‘graphic’ thanks to Hilbert’s Nullstellensatz.

MA318-6-AU
Statistical Methods
(15 CREDITS)

This module will enable you to expand your knowledge on multiple statistical methods. You will learn the concepts of decision theory and how to apply them, have the chance to explore “Monte Carlo” simulation, and develop an understanding of Bayesian inference, and the basic concepts of a generalised linear model.

MA319-6-AU
Stochastic Processes
(15 CREDITS)

Ever considered becoming an Actuary? This module covers the required material for the Institute and Faculty of Actuaries CT4 and CT6 syllabus. It explores the stochastic process and principles of actuarial modelling alongside time series models and analysis.

MA320-6-SP
Financial Derivatives
(15 CREDITS)

Why are arbitrage arguments important in modern finance? How can a binomial model evaluate derivatives? What are the main models for interest rates? Understand the mathematical techniques underlying the modelling of derivative pricing. Acquire skills in the development of pricing and risk management. Explore stochastic methods and credit risk.

MA323-6-SP
Partial Differential Equations
(15 CREDITS)

This module will cover partial differential equations (PDEs), which can describe a majority of physical processes and phenomena. You will learn the properties of first and second order PDEs, the concepts behind them and the methods for solving such equations.

At Essex we pride ourselves on being a welcoming and inclusive student community. We offer a wide range of support to individuals and groups of student members who may have specific requirements, interests or responsibilities.

Find out more

The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include, but are not limited to: strikes, other industrial action, staff illness, severe weather, fire, civil commotion, riot, invasion, terrorist attack or threat of terrorist attack (whether declared or not), natural disaster, restrictions imposed by government or public authorities, epidemic or pandemic disease, failure of public utilities or transport systems or the withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications. The University would inform and engage with you if your course was to be discontinued, and would provide you with options, where appropriate, in line with our Compensation and Refund Policy.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.