Undergraduate Course

BSc Genetics and Genomics

BSc Genetics and Genomics

Overview

The details
Genetics and Genomics
C410
October 2018
Full-time
3 years
Colchester Campus

The sequencing of the human genome is one of the biggest achievements of this century. This endeavour resulted from the development of automated sequencing and the use of computers for sequence assembly and annotation. Nowadays, thousands of genomes have been sequenced and the number is increasing exponentially. Genomics is leading to major advances in biotechnology and molecular medicine.

On our course you will study both genetics, at the level of a single gene or group of genes, and genomics, at the level of an organism’s entire genes – the genome. This allows you to gain an understanding of hereditary issues, the effects of variation and natural selection, how genes interact with each other, and the role of environmental influences.

Research into genetics and genomics has advanced our understanding of a wide range of topics including Alzheimer’s disease, schizophrenia, personalised medicine, and children’s numeracy and literacy learning. Your final year project allows you to contribute to this field, approaching unanswered scientific questions using state-of-the-art-techniques; popular topics have ranged from the genetics of cancer and regulation of the immune response, to population genomics and molecular evolution.

You also study taught modules on areas including:

  • Genome science and the diagnosis and prevention of disease
  • Programming in R (for statistical computing)
  • Bioinformatics and quantitative biology
  • Computational data analysis
  • Genes, protein and disease
  • Molecular cell biology

Some of the most exciting and important advances in biology are now being made in the field of genetics and genomics, and at Essex you have the opportunity to gain the research skills in high demand in industry and research.

Why we're great.
  • You study advanced, medically important topics including cancer biology and immunology.
  • You develop essential lab skills in gene manipulation, cloning and microscopy.
  • You gain valuable research experience by being involved in cutting-edge project work.

Study abroad

Your education extends beyond the university campus. We support you in expanding your education through offering the opportunity to spend a year or a term studying abroad at one of our partner universities. The four-year version of our degree allows you to spend the third year abroad or employed on a placement abroad, while otherwise remaining identical to the three-year course.

Studying abroad allows you to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised.

If you spend a full year abroad you'll only pay 15% of your usual tuition fee to Essex for that year. You won't pay any tuition fees to your host university

Placement year

Alternatively, you can spend your third year on a work placement with an external organisation. This is usually focused around your course, and enables you to learn about a particular sector, company or job role, apply your academic knowledge in a practical working environment, and receive inspiration for future career pathways.

Organisations our students have recently been placed with include GlaxoSmithKline, Proctor & Gamble, Aquaterra, Astrazeneca, Genzyme, Reckitt Benckiser, Thermofisher, and Isogenica.

If you complete a placement year you'll only pay 20% of your usual tuition fee to Essex for that year.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high-quality teaching. Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our research covers a wide spectrum of biology – from the cell right through to communities and ecosystems. Key academic staff for this course include Professor Leo Schalkwyk, who is researching the genes involved in depression, schizophrenia and Alzheimer’s disease, Dr Antonio Marco who specialises in evolutionary genomics, and Dr Greg Brooke, who is working on tumour growth and therapy resistance in prostate and breast cancer.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.The School of Biological Sciences was awarded the Athena SWAN Departmental Bronze Award in 2014.

Specialist facilities

Recent spending by our University has allowed for major refurbishment and expansion of our School of Biological Sciences, including:

  • Work in an open and friendly department, with shared staff-student social spaces
  • Conduct your final-year research alongside academics and PhD students in shared labs
  • State-of-the-art research facilities including confocal microscopy imaging systems, proteomic mass spectroscopy, next-generation sequencing and high-throughput computation facilities.
  • Teaching facilities including new undergraduate laboratories
  • Practical work in your final year using the latest molecular genetic and genomic methodologies, including gene cloning, genetic analysis, DNA sequencing, analysis of gene expression and computational biology.

Your future

Our aim is to produce genetics graduates able to progress to careers in scientific research or industry. You have the opportunity to gain excellent employability skills and the ability to understand and analyse complex data, including mathematical and statistical approaches.

Recent graduates from our School have taken up a wide range of careers in research laboratories, consultancies, business and industry, including at Cancer Research UK. Others have gone on to work in sales, publishing and management, while others still have chosen to specialise by studying for MSc or PhD degrees.

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Entry requirements

UK entry requirements

A-levels: BCC, including Biology or Maths at grade B. Where applicable a pass is required in science practical element of A-level Biology, Chemistry or Physics.
GCSE: Mathematics C/4

IB: 28 points, including Higher Level Biology or Maths grade 5 and Standard Level Mathematics or Maths Studies grade 4, if not taken at Higher Level. We are also happy to consider a combination of separate IB Diploma Programmes at both Higher and Standard Level. Please note that Standard Level Maths in the IB is not required if you have already achieved GCSE Maths at grade C/4 or above or 4 in IB Middle Years Maths.

Exact offer levels will vary depending on the range of subjects being taken at higher and standard level, and the course applied for. Please contact the Undergraduate Admissions Office for more information.

International & EU entry requirements

We accept a wide range of qualifications from applicants studying in the EU and other countries. Get in touch with any questions you may have about the qualifications we accept. Remember to tell us about the qualifications you have already completed or are currently taking.

Sorry, the entry requirements for the country that you have selected are not available here.Please select your country page where you'll find this information.

English language requirements

English language requirements for applicants whose first language is not English: IELTS 6.0 overall. Different requirements apply for second year entry, and specified component grades are also required for applicants who require a Tier 4 visa to study in the UK.

Other English language qualifications may be acceptable so please contact us for further details. If we accept the English component of an international qualification then it will be included in the information given about the academic levels listed above. Please note that date restrictions may apply to some English language qualifications

If you are an international student requiring a Tier 4 visa to study in the UK please see our immigration webpages for the latest Home Office guidance on English language qualifications.

If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.

Structure

Example structure

We offer a flexible course structure with a mixture of compulsory and optional modules chosen from lists. Below is just one example structure from the current academic year of a combination of modules you could take. Your course structure could differ based on the modules you choose.

Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore all modules listed are subject to change. To view the compulsory modules and full list of optional modules currently on offer, please view the programme specification via the link below.

Molecular Cell Biology

The building blocks of life, plants and animals depend on the actions of individual cells. Investigate the biochemical characteristics of the small molecules and large macromolecules that allow cells to function. You examine the origins of life, cell structure and function, energy transductions, synthesis of molecules, and the eukaryotic cell cycle.

View Molecular Cell Biology on our Module Directory

Genetics and Evolution

Why do we all look different? Are some illnesses hereditary? Are animals born ready-suited to their environment? From the early theories of Mendel to modern studies in molecular genetics, you explore how scientists have answered these questions over the last 150 years. Examine how the structure and function of DNA allows genetic material to be expressed, replicated and inherited, and consider how genetic variation leads to adaptive evolution. From developing new technologies in gene cloning to the applications for modern medicine, you explore how geneticists are building on the earlier achievements in this fundamentally important field to enhance our understanding of life on earth.

View Genetics and Evolution on our Module Directory

Microbiology

Get to know the culprits of some of the world’s deadliest diseases. Despite major advances in treatment and prevention, incidences of infectious disease continue to rise. Vast diversity, rapid evolution and the opportunistic nature of micro-organisms present a significant challenge. You examine how different viruses and bacteria invade, interact and replicate within living hosts, and explore the consequent impact on ecology, industry and disease. A series of four practical sessions allows you to get hands-on and develop valuable skills. You learn how to purify, observe, count and kill micro-organisms in our purpose-built labs, gaining experience of aseptic techniques, serial dilution, response to antibiotics, and staining.

View Microbiology on our Module Directory

Biochemistry of Macromolecules

Explore the building blocks of life. From the proteins that make up our genetic code to the lipids that envelope our cells, explore the structure, function and biological role of the major macromolecules. You investigate the basic principles of protein structural bioinformatics and protein structural evolution, examine how ligand-binding equilibria may form the basis of diverse biological phenomena, learn the structure and properties of monosaccharides and polysaccharides and review the major types of lipids. This module develops key skills in analysis and interpretation of data, biochemical methodology and calculation of biochemical parameters.

View Biochemistry of Macromolecules on our Module Directory

General and Organic Chemistry

Many recent advances in biological research have been born from an increased understanding of the molecules involved in systems and processes. But what do things look like beyond molecular level?<br><br>Study how molecules are formed from individual atoms, and how the properties of these constituent atoms influence molecular structure and reactivity. Examine the fundamental concepts of chemical bonding, electronegativity, acidity, basicity, hydrogen bonding and review the common organic functional groups and different types of isomerism.

View General and Organic Chemistry on our Module Directory

Scientific and Transferable Skills for Biosciences

Develop your skillset and boost your CV. This module prepares you for the coursework, laboratory practicals and research projects that you will encounter during undergraduate study. Get to know referencing systems and learn how to effectively communicate scientific information. Use scientific units and simple algebra and demonstrate understanding of logarithms, exponentials, geometry and elementary calculus. Learn how to design experiments, handle data and display, interpret and analyse basic statistics. Teaching and learning will be through a mixture of lectures, classes, practicals and tutorials, with an emphasis on developing the key transferable skills needed for a career in biosciences.

View Scientific and Transferable Skills for Biosciences on our Module Directory

Inorganic and Physical Chemistry (optional)

To fully understand the function of biological systems, we must examine their underlying biochemical principles. You explore the importance of molecules which contain the p-block elements of oxygen, nitrogen, sulphur and phosphorus, concentrating on how their electron structure relates to the action of redox enzymes in metabolism. You also look at the biological role of main-group and transition metal cations.<br><br>You will also review the physical elements of biochemical reactions, including kinetics and thermodynamics. You determine reaction rates, reaction orders and activation energies as well as assessing how thermodynamic parameters affect reactions.

View Inorganic and Physical Chemistry (optional) on our Module Directory

Enterprise and Employability for the Biosciences

Develop your practical and critical thinking skills during this week-long summer module. Basic knowledge gained from molecular biology is now being applied to solve industrial scale biological problems. You will rationally design bacteria by engineering DNA and transforming your microbe in the lab before presenting your results to peers.

View Enterprise and Employability for the Biosciences on our Module Directory

Molecular Biology: Genes, Proteins and Disease

Molecular biology is central to our knowledge of how biology "works" at a molecular level. This module explores the breadth of processes involved in the regulation of gene expression and the proteins that are made. You also discover the ever-expanding range of molecular biology techniques, including PCR, cloning and mutagenesis, and how these are applied to investigate and treat disease.

View Molecular Biology: Genes, Proteins and Disease on our Module Directory

Genome Science

We are in the age of genomics and scientists have devised new technologies that can generate whole genome sequences in days which would once have taken years to achieve. Learn the high-throughput techniques of next-generation sequencing used to study genomes, the proteome and the interactome. Investigate how nucleotide sequences are analysed, applying the analytical tools used by research scientists and understand how new genes are discovered and their functions revealed. You also discover how our knowledge of gene structure is being applied in the emerging field of synthetic biology to create new organisms and modify existing ones by gene editing.

View Genome Science on our Module Directory

Computational Data Analysis: R for Life Sciences

If we were to compile the DNA sequence of the human genome into a book, it would be 200,000 pages long, and would take 10 years to read. The ability to effectively interpret and analyse large-scale genetic and genomic data sets is a crucial skill for next-generation biologists. The module provides a basic introduction to R, the programming language of choice for biologists industry and academia. You learn to write scripts and functions, read and write data files in different formats, use basic plot functionalities and perform basic statistical analysis.

View Computational Data Analysis: R for Life Sciences on our Module Directory

Medical Genetics (optional)

5.5% of the population will have developed a genetic disorder by age 25. But how does genetic disease occur? From understanding the molecular basis of genetic disease, to the techniques used in NHS laboratories for diagnosis and screening for genetic disorders, you address the nature and inheritance of both single gene and complex genetic disease, and explore the effects of abnormalities in human chromosomes. Developments such as gene therapy, the 100,000 genomes project and manipulation of embryos will also be discussed.

View Medical Genetics (optional) on our Module Directory

Cell Biology (optional)

The study of cells is at the centre of modern biology.  Learn how cellular components determine cell structure and function, how cells communicate and how signaling pathways regulate cell fate.  You also explore the regulation of the cell cycle and cell death and learn about changes that occur in cells that have become cancerous. A solid understanding of cell biology opens doors to more specialist topics, such as plant biotechnology and cancer biology.

View Cell Biology (optional) on our Module Directory

Proteins and Macromolecular Assemblies (optional)

Understanding the shape, structure and folding of proteins can provide the basis for drug targeting in disease processes and enable us to develop a better understanding of specific biological pathways. This module takes a look at particular macromolecular assemblies using the most up-to-date structural biological techniques with a particular emphasis on x-ray crystallography.

View Proteins and Macromolecular Assemblies (optional) on our Module Directory

Protein Bioinformatics (optional)

Bioinformatics have become an indispensable skill for the next generation of biochemists and biologists in order to retrieve, analyse and interpret data. You will learn how to access, search and extract data from publicly available protein databases, and analyse and display results using appropriate software.

View Protein Bioinformatics (optional) on our Module Directory

Issues in Biomolecular Science

How does modern biology affect our day-to-day lives? Consider the impact of recent advances on society. Transgenic crops, ever-increasing (and sometimes unwanted) prolongation of life, cloning of animals – to what extent can science be allowed to manipulate nature? And who has the final say?

View Issues in Biomolecular Science on our Module Directory

Genome Bioinformatics

Fill the skills gap. Bioinformatics is a rapidly growing discipline based on the need to obtain biologically-meaningful information from the huge volumes of DNA-sequence, gene expression and protein structure data. Traditionally the niche area of computational biologists, there is an increasing need to for every type of biologist to be able to handle large datasets. You learn by solving problems, working through example datasets in order to understand and learn how to utilise and interpret commonly used methods.

View Genome Bioinformatics on our Module Directory

Research Project in Biomolecular Science

This module gives you the chance to conduct an individual scientific investigation on a topic relating to your degree specialisation. Develop skills to identify a suitable question and then design an experimental approach to obtain data addressing this question. This module assesses your analysis and presentation of these data in a suitable scientific paper format report and the research, understanding and critical writing about the scientific literature relating to your project as well as your oral project presentation skills and response to questions, the planning and management of your project work, your progress reflection and your employability skills.

View Research Project in Biomolecular Science on our Module Directory

Rational Drug Design (optional)

How are new drugs and medicines developed? What is rational drug design? This module explores the process of finding new medicines based on the deliberate targeting of enzymes and receptors for the treatment of disease. You will use case studies to look at the some of the particularly interesting and effective biophysical and computer based approaches used by cutting-edge biotechnology companies in the molecular design of new drugs and gain practical experience in aspects of computer-aided design.

View Rational Drug Design (optional) on our Module Directory

Stem Cell Biology and Ageing (optional)

This module describes the fundamental principles of stem cell biology and molecular mechanisms and factors that define their 'stemness'. It also covers the processes that govern their differentiation into specific cell types.

View Stem Cell Biology and Ageing (optional) on our Module Directory

Molecular Basis of Cancer (optional)

The aim of this module is to provide you with current knowledge and understanding of cancer. We will discuss general aspects of cancer biology (cancer statistics and risk factors, origins and multistage nature of cancer, metastasis and angiogenesis). The identification and isolation of oncogenes and tumour suppressors and the mechanism of action of their products will be analysed. We will explore cancer molecular biology and signalling pathways in cancer. We will discuss cell cycle and apoptosis and their role in the maintenance of normal cell populations and in the emergence of cancer. The principles of some of the current approaches in cancer therapy will be discussed.

View Molecular Basis of Cancer (optional) on our Module Directory

Placement

On a placement year you gain relevant work experience within an external business or organisation, giving you a competitive edge in the graduate job market and providing you with key contacts within the industry. The rest of your course remains identical to the three-year degree.

Year abroad

On your year abroad, you have the opportunity to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised. The rest of your course remains identical to the three-year degree.

Teaching

  • Learn through a combination of lectures, laboratory sessions and coursework
  • Gain experience collating and interpreting data, and reporting findings clearly and concisely

Assessment

  • Degrees are awarded on the results of your written examinations together with continual assessments of your practical work and coursework
  • Contribute towards real-world research projects in your final year of study

Fees and funding

Home/EU fee

£9,250

International fee

£16,170

Fees will increase for each academic year of study.

Home and EU fee information

International fee information

What's next

Open Days

Our events are a great way to find out more about studying at Essex. We run a number of Open Days throughout the year which enable you to discover what our campus has to offer. You have the chance to:

  • tour our campus and accommodation
  • find out answers to your questions about our courses, student finance, graduate employability, student support and more
  • meet our students and staff

Check out our Visit Us pages to find out more information about booking onto one of our events. And if the dates aren’t suitable for you, feel free to book a campus tour here.

2018 Open Days (Colchester Campus)

  • Saturday, June 23, 2018

Applying

Applications for our full-time undergraduate courses should be made through the Universities and Colleges Admissions Service (UCAS). Applications are online at: www.ucas.com. Full details on this process can be obtained from the UCAS website in the how to apply section.

Our UK students, and some of our EU and international students, who are still at school or college, can apply through their school. Your school will be able to check and then submit your completed application to UCAS. Our other international applicants (EU or worldwide) or independent applicants in the UK can also apply online through UCAS Apply.

The UCAS code for our University of Essex is ESSEX E70. The individual campus codes for our Loughton and Southend Campuses are ‘L’ and ‘S’ respectively.

Applicant Days and interviews

Resident in the UK? If your application is successful, we will invite you to attend one of our applicant days. These run from January to April and give you the chance to explore the campus, meet our students and really get a feel for life as an Essex student.

Some of our courses also hold interviews and if you’re invited to one, this will take place during your applicant day. Don’t panic, they’re nothing to worry about and it’s a great way for us to find out more about you and for you to find out more about the course. Some of our interviews are one-to-one with an academic, others are group activities, but we’ll send you all the information you need beforehand.

If you’re outside the UK and are planning a trip, feel free to email visit@essex.ac.uk so we can help you plan a visit to the University.

Colchester Campus

Visit Colchester Campus

We want you to throw yourself in at the deep end, soak up life and make the most of those special Essex moments.

Home to over 13,000 students from more than 130 countries, our Colchester Campus is the largest of our three sites, making us one of the most internationally diverse campuses on the planet - we like to think of ourselves as the world in one place.

 

Virtual tours

If you live too far away to come to Essex (or have a busy lifestyle), no problem. Our 360 degree virtual tours allows you to explore our University from the comfort of your home. Check out our Colchester virtual tour and Southend virtual tour to see accommodation options, facilities and social spaces.

Exhibitions

Our staff travel the world to speak to people about the courses on offer at Essex. Take a look at our list of exhibition dates to see if we’ll be near you in the future.

The University makes every effort to ensure that this information on its course finder is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include a change of law or regulatory requirements, industrial action, lack of demand, departure of key personnel, change in government policy, or withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep prospective students informed appropriately by updating our programme specifications.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.

Related courses

Two women looking at a PC screen
Ask us a question

Want to quiz us about your course? Got a question that just needs answering? Get in touch and we’ll do our best to email you back shortly.