This site uses cookies. By continuing to browse the site you are consenting to their use. Please visit our cookie policy to find out which cookies we use and why.
View cookie policy.
Data is the lifeblood of our society. From medicine to government offices, and market research to the environment, the collection and analysis of data is crucial to understanding how to improve, create and guide products and services across the globe.
Harvard Business Review recently described the job of Data Scientist as “the sexiest job of the 21st century”. Data science is about doing some detective work and carrying out the investigations needed to inform important decisions and to predict new trends. Technology is growing and evolving at an incredible speed, and both the rate of growth of data we generate and the devices we use to process it can only increase.
Our BSc Data Science and Analytics (including foundation year) is open to Home and EU students. It will be suitable for you if your academic qualifications do not yet meet our entrance requirements for the three-year version of this course and you want a programme that increases your subject knowledge as well as improves your English language and academic skills.
This four-year course includes a foundation year (Year Zero), followed by a further three years of study. During your Year Zero, you study four academic subjects relevant to your chosen course as well as a compulsory English language and academic skills module.
You are an Essex student from day one, a member of our global community based at the most internationally diverse campus university in the UK.
After successful completion of Year Zero in our Essex Pathways Department, you progress to complete your course with our Department of Mathematical Sciences.
At Essex, we help you to understand how utilising the speed and processing-power of computers can assist in using data to make better decisions. You discover the new methods and the smart, unusual questions needed to make sense of both structured and unstructured data.
Your course balances solid theory with practical application through exploring topics including:
Mathematical skills
Computer science and programming
Statistics and operations research
Artificial intelligence, databases and information retrieval
Ethical issues around the use and processing of data
Specialist skills in the areas of big data, data analytics and data science
A successful career in data science requires you to possess truly interdisciplinary knowledge, so we ensure that you graduate with a wide-ranging yet specialised set of skills in this area. You are taught mainly within our Department of Mathematical Sciences and our School of Computer Science and Electronic Engineering, but also benefit from input from our Essex Business School, and our Essex Pathways Department.
Data scientists are required in every sector, carrying out statistical analysis or mining data on social media, so our course can open the door to almost any industry, from health, to government, to publishing.
You join a community of scholars leading the way in technological research and development.
We are home to many of the world's top scientists and engineers in their field.
You have access to our ultramodern facilities at our new STEM building that provide real-world experience.
Our expert staff
Today’s computer scientists are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top scientists, and our staff are driven by creativity and imagination as well as technical excellence. We conduct research in areas such as explorative data analysis, classification and clustering, evolutionary computation, data visualisation and financial forecasting.
Specialist staff working on data science and analytics include:
Dr Luca Citi – machine learning, learning from biological signals and data (EEG, etc)
Dr Hongsheng Dai – computational Bayesian statistics
Professor Maria Fasli – machine learning, adaptation, semantic information extraction, ontologies, data exploration, recommendation technologies
Professor Berthold Lausen – biostatistics, classification and clustering, data science education, event time data, machine learning, predictive modelling
Professor Abdel Salhi – data mining, numerical analysis, optimisation
Dr Spyros Vrontos – actuarial mathematics and actuarial modelling
Dr Xinan Yang – approximate dynamic programming, Markov decision process
Our Department of Mathematical Sciences is genuinely innovative and student-focused. Our research groups are working on a broad range of collaborative areas tackling real-world issues. Here are a few examples:
Our data scientists carefully consider how not to lie, and how not to get lied to with data. Interpreting data correctly is especially important because much of our data science research is applied directly or indirectly to social policies, including health, care and education.
We do practical research with financial data (for example, assessing the risk of collapse of the UK’s banking system) as well as theoretical research in financial instruments such as insurance policies or asset portfolios.
We also research how physical processes develop in time and space. Applications of this range from modelling epilepsy to modelling electronic cables.
Our optimisation experts work out how to do the same job with less resource, or how to do more with the same resource.
Specialist facilities
By studying within our Essex Pathways Department for your foundation year, you will have access to all of the facilities that the University of Essex has to offer, as well as those provided by our department to support you:
We provide computer labs for internet research; classrooms with access to PowerPoint facilities for student presentations; AV facilities for teaching and access to web-based learning materials
Our new Student Services Hub will support you and provide information for all your needs as a student
Our social space is stocked with hot magazines and newspapers, and provides an informal setting to meet with your lecturers, tutors and friends
Our School of Computer Science and Electronic Engineering also offers excellent on-campus facilities:
We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
All computers run either Windows 10 or are dual boot with Linux
Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors.
Your future
Demand for skilled graduates in the areas of big data and data science is growing rapidly in both the public and private sector, and there is a predicted shortage of data scientists with the skills to understand and make commercial decisions based on the analysis of big data.
Our graduates in data science have been very successful in finding employment in the public sector, consulting, technology, retail, and utilities, while a number have gone on to postgraduate study or research.
Our recent graduates have gone on to work for a wide range of high-profile companies including:
Aviva
AXA
BT
Profusion
EDS
Mondaq
IBM
Royal Bank of Scotland
Accenture
Buck Consultants
Google
Force India F1
Our Schools have a large pool of external contacts, ranging from companies providing robots for the media industry, through vehicle diagnostics, to the transforming of unstructured data to cloud-based multidimensional data cubes, who work with us and our students to provide advice, placements and eventually graduate opportunities.
We also work with our University's Student Development Team to help you find out about further work experience, internships, placements, and voluntary opportunities.
“I knew I wanted to do data science after discovering that it was the perfect subject for people who enjoy both computing and maths. I decided to study at Essex because it was one of the few universities who offered a degree in data science; it was also one of the highest rated universities in the UK. I’m currently enjoying programming the most, purely because I love problem solving, but I’ve enjoyed all of the modules I have studied so far. All of my professors and lecturers are helpful – they devote a lot of their time to us as students.
“I want to travel once I have finished university and therefore work long-distance – which in today’s modern world is definitely possible! Essex partners with a lot of businesses and companies, and gives students opportunities to gain highly useful work experience through a placement year. I think studying at Essex will put me in a great place when I graduate.”
Andreas Loucas, BSc Data Science and Analytics student
Entry requirements
UK entry requirements
UK and EU applicants:
All applications for degree courses with a foundation year (Year Zero) will be considered individually, whether you
think you might not have the grades to enter the first year of a degree course;
have non-traditional qualifications or experience (e.g. you haven’t studied A-levels or a BTEC);
are returning to university after some time away from education; or
are looking for more support during the transition into university study.
Standard offer:
Our standard offer is 72 UCAS tariff points from at least two full A-levels, or equivalent.
Examples of the above tariff may include:
A-levels: DDD
BTEC Level 3 Extended Diploma: MMP
T-levels: Pass with E in core
For this course all applicants must also hold GCSE Maths and Science at grade C/4 or above (or equivalent). We may be able to consider a pass in Level 2 Functional Skills Maths where you cannot meet the requirements for Maths at GCSE level. However, you are advised to try to retake GCSE Mathematics if possible as this will better prepare you for university study and future employment.
If you are unsure whether you meet the entry criteria, please get in touch for advice.
Mature applicants and non-traditional academic backgrounds:
We welcome applications from mature students (over 21) and students with non-traditional academic backgrounds (might not have gone on from school to take level 3 qualifications). We will consider your educational and employment history, along with your personal statement and reference, to gain a rounded view of your suitability for the course.
You will still need to meet our GCSE requirements.
International applicants:
Essex Pathways Department is unable to accept applications from international students. Foundation pathways for international students are available at the University of Essex International College and are delivered and awarded by Kaplan, in partnership with the University of Essex. Successful completion will enable you to progress to the relevant degree course at the University of Essex.
International & EU entry requirements
We accept a wide range of qualifications from applicants studying in the EU and other countries. Get in touch with any questions you may have about the qualifications we accept. Remember to tell us about the qualifications you have already completed or are currently taking.
Sorry, the entry requirements for the country that you have selected are not available here. Please select
your country page
where you'll find this information.
Other English language qualifications may be acceptable so please contact us for further details. If we accept the English component of an international qualification then it will be included in the information given about the academic levels required. Please note that date restrictions may apply to some English language qualifications
If you are an international student requiring a Tier 4 visa to study in the UK please see our immigration webpages for the latest Home Office guidance on English language qualifications.
If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.
Additional Notes
Our Year 0 courses are only open to UK and EU applicants. If you’re an international student, but do not meet the English language or academic requirements for direct admission to your chosen degree, you could prepare and gain entry through a pathway course. Find out more about opportunities available to you at the University of Essex International College.
Structure
Course structure
We offer a flexible course structure with a mixture of core/compulsory modules, and optional modules chosen from lists.
Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field. The course content is therefore reviewed on an annual basis to ensure our courses remain up-to-date so modules listed are subject to change.
We understand that deciding where and what to study is a very important decision for you. We’ll make all reasonable efforts to provide you with the courses, services and facilities as described on our website. However, if we need to make material changes, for example due to significant disruption, or in response to COVID-19, we’ll let our applicants and students know as soon as possible.
Components and modules explained
Components
Components are the blocks of study that make up your course. A component may have a set module which you must study, or a number of modules from which you can choose.
Each component has a status and carries a certain number of credits towards your qualification.
Status
What this means
Core
You must take the set module for this component and you must pass. No failure can be permitted.
Core with Options
You can choose which module to study from the available options for this component but you must pass. No failure can be permitted.
Compulsory
You must take the set module for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Compulsory with Options
You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Optional
You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
The modules that are available for you to choose for each component will depend on several factors, including which modules you have chosen for other components, which modules you have completed in previous years of your course, and which term the module is taught in.
Modules
Modules are the individual units of study for your course. Each module has its own set of learning outcomes and assessment criteria and also carries a certain number of credits.
In most cases you will study one module per component, but in some cases you may need to study more than one module. For example, a 30-credit component may comprise of either one 30-credit module, or two 15-credit modules, depending on the options available.
Modules may be taught at different times of the year and by a different department or school to the one your course is primarily based in. You can find this information from the module code. For example, the module code HR100-4-FY means:
HR
100
4
FY
The department or school the module will be taught by.
In this example, the module would be taught by the Department of History.
Develop your problem solving skills in this module, as you are introduced to Statistical and Mathematical concepts with a particular focus on mechanics. You become familiar with R software, one of the most widely used statistical analysis software in the world, and learn how to use it to analyse and interpret data. You study simple concepts and techniques like data description and distribution; before moving on to more complex topics and theories including Newton’s laws of motion and the concepts of Mechanical energy. While also covering everything from probability rules and hypothesis testing to advanced algebra – you will be well equipped to present your solutions and findings to an audience with no specialist knowledge of Statistics and Mechanics.
Want to know the basic mathematical techniques of algebra? To understand calculus? To apply methods of differentiation and integration to a range of functions? Build the basic, then more advanced, mathematical skills needed for future study. Learn to solve relevant problems, choosing the most suitable method for solution.
This blended-learning module is designed to support students in their academic subject disciplines and to strengthen their confidence in key skills areas such as: academic writing, research, academic integrity, collaborative and reflective practices.
The students are supported through the use of subject-specific materials tailored to their chosen degrees with alignment of assessments between academic subject modules and the skills module.
How do you test and evaluate the operation of simple computer programs? Or develop a program using tools in the Python programming language? Study the principles of procedural computing programming. Examine basic programming concepts, structures and methodologies. Understand good program design, learn to correct coding and practice debugging techniques.
Our Team Project Challenge gives you the opportunity to develop a range of professional skills by working as part of a small student team on a specific project. The projects are research-based and incorporate the concepts of specifications, design, and implementation. You’ll learn about sustainability, project and time management, design, legal issues, health and safety, data analysis and presentation, team reporting, and self-evaluation.
You’ll also develop skills such as critical thinking and problem solving, agility, leadership, collaboration across networks, and effective oral and written communication, as well as curiosity and imagination, all of which will enhance your knowledge, confidence and social skills necessary to innovate and succeed in a competitive global environment.
This module will provide you with a foundation of knowledge on the mathematics of sets and relations. You will develop an appreciation of mathematical proof techniques, including proof by induction.
How do you apply the addition rule of probability? Or construct appropriate diagrams to illustrate data sets? Learn the basics of probability (combinatorial analysis and axioms of probability), conditional probability and independence, and probability distributions. Understand how to handle data using descriptive statistics and gain experience of R software.
The aim of this module is to provide an introduction to the fundamental concepts of computer programming. After completing this module, students will be expected to be able to demonstrate an understanding of the basic principles and concepts that underlie the procedural programming model, explain and make use of high-level programming language features that support control, data and procedural abstraction. Also, they will be able to analyse and explain the behaviour of simple programs that incorporate standard control structures, parameterised functions, arrays, structures and I/O.
Want to become a Java programmer? Topics covered in this module include control structures, classes, objects, inheritance, polymorphism, interfaces, file I/O, event handling, graphical components, and more. You will develop your programming skills in supervised lab sessions where help will be at hand should you require it.
Databases are everywhere. They are employed in banking, production control and the stock market, as well as in scientific and engineering applications. For example, the Human Genome Project had the goal of mapping the sequence of chemical base pairs which make up human DNA. The result is a genome database. This module introduces the underlying principles of databases, database design and database systems. It covers the fundamental concepts of databases, and prepares the student for their use in commerce, science and engineering.
This module will allow you to build your knowledge of differentiation and integration, how you can solve first and second order differential equations, Taylor Series and more.
This course covers the principles of project management, team working, communication, legal issues, finance, and company organisation. Working in small teams, students will go through the full project life-cycle of design, development and implementation, for a bespoke software requirement. In this course, students gain vital experience to enable them to enter the computer science/Electrical engineering workforce, with a degree backed by the British Computer Society, and by the Institute of Engineering and Technology.
The aim of this module is to build on the foundations of data and information systems laid down in the first year, learn how to design and manage fully structured data repositories and explore the rather different principles and techniques involved in representing, organising and displaying unstructured information.
Artificial intelligence will be a great driver of change in the coming decades. This module provides an introduction to three fundamental areas of artificial intelligence: search, knowledge representation, and machine learning. These underpin all more advanced areas of artificial intelligence and are of central importance to related fields such as computer games and robotics. Within each area, a range of methodologies and techniques are presented, with emphasis being placed on understanding their strengths and weaknesses and hence on assessing which is most suited to a particular task.
In this module you'll be introduced to the basics of probability and random variables. Topics you will discuss include distribution theory, estimation and Maximum Likelihood estimators, hypothesis testing, basic linear regression and multiple linear regression implemented in R.
Are you able to solve a small linear programming problem using an appropriate version of the Simplex Algorithm? Learn to formulate an appropriate linear programming model and use the MATLAB computer package to solve linear programming problems. Understand the methods of linear programming, including both theoretical and computational aspects.
Data structures and algorithms lie at the heart of Computer Science as they are the basis for the efficient solution of programming tasks. In this module, students will study core algorithms and data structures, as well as being given an introduction to algorithm analysis and basic computability.
You'll be introduced to a range of important concepts which are used in all areas of mathematics and statistics. This module is structured in such a way that during learning sessions you'll develop good practical understanding of these concepts via discussion and exercises, and have an opportunity to ask questions. Theory is introduced via recorded videos and the corresponding notes published on Moodle, and also via recommendations of textbooks. The contact hours are dedicated to interactive activities such as lab exercises and flipped lecture quizzes; also you will have some additional formative tests in Moodle.
What skills do you need to succeed during your studies? And what about after university? How will you realise your career goals? Develop your transferable skills and experiences to create your personal profile. Reflect on and plan your ongoing personal development, with guidance from your personal advisor within the department.
This is a two-term project for which a student should undertake about 150 hours work. Students will gain experience of some branch of mathematics, statistics, operational research or the interface of these disciplines with other fields. The student should also gain experience of solo work involving research concerning some previously unknown topic, the production of a project report and an oral examination.
Can you calculate confidence intervals for parameters and prediction intervals for future observations? Represent a linear model in matrix form? Or adapt a model to fit growth curves? Learn to apply linear models to analyse data. Discuss underlying assumptions and standard approaches. Understand methods to design and analyse experiments.
How do you apply multivariate methods? Or demographical and epidemiological methods? And how do you apply sampling methods? Study three application areas of statistics – multivariate methods, demography and epidemiology, and sampling. Understand how to apply and assess these methods in a variety of situations.
This module offers you an understanding of standard IR models, of their merits and limitations, and teaches you how to design and implement a standard information retrieval system. Discover the essential foundations of information retrieval and gain solid, applicable knowledge of state-of-the-art search technology. Explore advanced concepts of search applications such as personalisation, profiling and contextual search.
Ever considered becoming an Actuary? This module covers the required material for the Institute and Faculty of Actuaries CT4 and CT6 syllabus. It explores the stochastic process and principles of actuarial modelling alongside time series models and analysis.
What skills do you need to succeed during your studies? And what about after university? How will you realise your career goals? Develop your transferable skills and experiences to create your personal profile. Reflect on and plan your ongoing personal development, with guidance from your personal advisor within the department.
Our events are a great way to find out more about studying at Essex. We run a number of Open Days throughout the year which enable you to discover what our campus has to offer.
You have the chance to:
tour our campus and accommodation
find out answers to your questions about our courses, student finance, graduate employability, student support and more
meet our students and staff
Check out our Visit Us pages to find out more information about booking onto one of our events. And if the dates aren’t suitable for you, feel free to book a campus tour here.
Applications for our full-time undergraduate courses should be made through the Universities and Colleges Admissions Service (UCAS). Applications are online at: www.ucas.com. Full details on this process can be obtained from the UCAS website in the how to apply section.
Our UK students, and some of our EU students, who are still at school or college, can apply through their school. Your school will be able to check and then submit your completed application to UCAS. Our other EU applicants or independent applicants in the UK can also apply online through UCAS Apply.
The UCAS code for our University of Essex is ESSEX E70. The individual campus codes for our Loughton and Southend Campuses are ‘L’ and ‘S’ respectively.
You can find further information on how to apply, including information on transferring from another university, applying if you are not currently at a school or college, and applying for readmission on our How to apply and entry requirements page.
Please note that this course is not open to international applicants.
Applicant Days
If you are an undergraduate student residing in the UK who has received an offer to study with us in October 2023, you will receive an email invitation to book onto one of our Applicant Days. Our Colchester Campus Applicant Days run from February to May 2023 on various Wednesdays and Saturdays, and our Southend Campus Applicant Days run from March to June 2023 on various weekdays and Saturdays. Applicant Days provide the opportunity to meet your department, tour our campus and accommodation, and chat to current students. We appreciate that travelling to university events can be expensive. This is why we have increased our Applicant Day Travel Bursary cap, allowing you to claim up to £150 as reimbursement for travel expenses. For further information about Applicant Days, including Terms and Conditions and eligibility criteria for our Travel Bursary, please visit our Applicant Days webpage.
Visit Colchester Campus
Home to 15,000 students from more than 130 countries, our Colchester Campus is the largest of our three sites, making us one of the most internationally diverse campuses on the planet - we like to think of ourselves as the world in one place.
Set within the 200-acre award-winning beautiful parkland - Wivenhoe Park and located two miles from the historic city centre of Colchester – England's oldest recorded development. Our Colchester Campus is also easily reached from London and Stansted Airport in under one hour.
Whether you are planning to visit us at one of our Open Days, or coming to an Applicant day. Our campus conveniently located and easy to reach by car, train or bus.
If you live too far away to come to Essex (or have a busy lifestyle), no problem. Our 360 degree virtual tours allows you to explore our University from the comfort of your home. Check out our Colchester virtual tour and Southend virtual tour to see accommodation options, facilities and social spaces.
Exhibitions
Our staff travel the world to speak to people about the courses on offer at Essex. Take a look at our list of exhibition dates to see if we’ll be near you in the future.
At Essex we pride ourselves on being a welcoming and inclusive student community. We offer a wide range of support to individuals and groups of student members who may have specific requirements, interests or responsibilities.
The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include, but are not limited to: strikes, other industrial action, staff illness, severe weather, fire, civil commotion, riot, invasion, terrorist attack or threat of terrorist attack (whether declared or not), natural disaster, restrictions imposed by government or public authorities, epidemic or pandemic disease, failure of public utilities or transport systems or the withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications. The University would inform and engage with you if your course was to be discontinued, and would provide you with options, where appropriate, in line with our Compensation and Refund Policy.
The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and
Ordinances and in the University Regulations, Policy and Procedures.