

MONASH ENGINEERING

Gesture Recognition for Initiating Human-to-Robot Handovers

Jun Kwan, Chinkye Tan and Akansel Cosgun

Problem Statement

- Object handovers can happen in two directions
- Robot-to-Human
 - The robot delivers a requested object to a human
- Human-to-Robot
 - The robot acquires an object from a human
- Develop a system to recognize the act of the human handing an object over to the robot

Overview

- Extract features relevant to the task
 - Object detection
 - Keypoints detection
 - Head pose estimation
- Train a classifier
 - Detect the existence of a handover gesture based on the extracted features

Object Detection Module

- Faster R-CNN with Detectron2 engine
 - Proposed by Ren et al. [1]
- Presence and location of object extracted
 - Bounding box around the object returned if object is detected
 - x, y, width and height

[1] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," in Advances in neural information processing systems, 2015, pp. 91–99

Body Keypoints Detection Module

- Keypoints R-CNN with Detectron2 engine
 Proposed by He et al. [2]
- Coordinates of various joints in the body extracted
 - 11 keypoints are selected (upper body)
- Centralized around the detected object
 - Object centric frame

Head Pose Estimation Module

- Multi-loss Resnet50 architecture
 - Proposed by Ruiz et al. [3]
- Multiple losses are designated for different Euler angles
- Multi-task cascaded convolution networks (MTCNN) [4]
 Face detection

[3] N. Ruiz, E. Chong, and J. M. Rehg, "Fine-grained head pose estimation without keypoints," in IEEE conference on computer vision and pattern recognition workshops, 2018
[4] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, "Joint face detection and alignment using multitask cascaded convolutional networks," IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016

Multi-layer Perceptron

- An input layer, four hidden layers, and an output layer
- Feature vector
 - The 1st parameter
 - The presence of an object in the scene
 - The 2nd to 23rd parameters
 - Pixel coordinates of upper body keypoints
 - The 24th to 26th parameters
 - The yaw, pitch and roll of the head orientation

- We designed a custom dataset to train the multi-layer perceptron
- A total of 25 videos were recorded in various environments
 - Containing a total of 2506 images
- Each image was labelled '1' denoting a handover scenario or '0' otherwise

Custom Dataset

9

- ResNet50 used instead of Multi-layer Perceptron
- Features are placed on a black image and fed into a CNN

End-to-End Method

- Standard CNN used as a baseline
- Alexnet [5] and ResNet50 [6] used
- Raw RGB images used as input to the CNN

[5] I. S. Alex Krizhevsky and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in International Conference on Neural Information Processing Systems, 2012
[6] S. R. Kaiming He, Xiangyu Zhang and J. Sun, "Deep residual learning for image recognition," arXiv preprint arXiv:1512.03385, 2015

Results

Methods	Accuracy (%)
End-to-end (Alexnet)	50.0
End-to-end (Resnet50)	89.4
CNN on skeleton images	83.3
MLP (absolute pixels)	90.1
MLP (relative to object)	90.6

Video Demonstration

- The system with object centric frame is more robust
 Absolute position of human no longer taken into account
- MLP system outperforms skeleton image CNN system
 - MLP receives features directly
 - CNN has to decipher features from the skeleton images

- Temporal information to be included
- Use of other communication cues, e.g. verbal and gaze
- Dataset to be more robust
- Ablation study of each module

MONASH ENGINEERING

Thank You

