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Problem Statement MONASH
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= Object handovers can happen in two directions

* Robot-to-Human
— The robot delivers a requested object to a human

* Human-to-Robot
— The robot acquires an object from a human

= Develop a system to recognize the act of the human
handing an object over to the robot
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RGB input frame

» Extract features relevant to the task
— Object detection
— Keypoints detection
— Head pose estimation

Binary classification

= Train a classifier
— Detect the existence of a handover gesture based on the
extracted features



Object Detection Module MONASH

» Faster R-CNN with Detectron2 engine
— Proposed by Ren et al. [1]

» Presence and location of object extracted
— Bounding box around the object returned if object is detected
— X, Y, width and height

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” in
Advances in neural information processing systems, 2015, pp. 91-99 4
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Body Keypoints Detection Module ot

» Keypoints R-CNN with Detectron2 engine
— Proposed by He et al. [2]

= Coordinates of various joints in the body extracted
— 11 keypoints are selected (upper body)

= Centralized around the detected object
— Object centric frame

[2] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 2961-2969 5



Head Pose Estimation Module e

Multi-loss Resnet50 architecture
— Proposed by Ruiz et al. [3]

Multiple losses are designated for different Euler angles

Multi-task cascaded convolution networks (MTCNN) [4]
— Face detection

[3] N. Ruiz, E. Chong, and J. M. Rehg, “Fine-grained head pose estimation without keypoints,” in IEEE conference on

computer vision and pattern recognition workshops, 2018

[4] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional

networks,” IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1499-1503, 2016 6



Multi-layer Perceptron Uerehy

= An input layer, four hidden layers, and an output layer

= Feature vector
— The 1st parameter
= The presence of an object in the scene
— The 2nd to 23rd parameters
= Pixel coordinates of upper body keypoints
— The 24th to 26th parameters
= The yaw, pitch and roll of the head orientation
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 We designed a custom dataset to train the multi-layer
perceptron

= A total of 25 videos were recorded in various

environments
— Containing a total of 2506 images

» Each image was labelled ‘1" denoting a handover
scenario or ‘0’ otherwise
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Skeleton Images Uiive

» ResNet50 used instead of Multi-layer Perceptron

» Features are placed on a black image and fed into a
CNN




End-to-End Method MONASH

= Standard CNN used as a baseline
= Alexnet [5] and ResNet50 [6] used

 Raw RGB images used as input to the CNN

[5] I. S. Alex Krizhevsky and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in International

Conference on Neural Information Processing Systems, 2012

[6] S. R. Kaiming He, Xiangyu Zhang and J. Sun, “Deep residual learning for image recognition,” arXiv preprint

arXiv:1512.03385, 2015 1 1



Results

Methods

End-to-end (Alexnet)
End-to-end (Resnet50)
CNN on skeleton images
MLP (absolute pixels)

MLP (relative to object)

Accuracy (%)
50.0
89.4
83.3
90.1

90.6
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Video Demonstration MONASH
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http://www.youtube.com/watch?v=k8uvbyvHBfY

Discussion et

» The system with object centric frame is more robust
— Absolute position of human no longer taken into account

 MLP system outperforms skeleton image CNN system
— MLP receives features directly
— CNN has to decipher features from the skeleton images
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Future Work et

Temporal information to be included

Use of other communication cues, e.g. verbal and gaze

Dataset to be more robust

Ablation study of each module
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