A BIOLOGICAL INSPIRED COGNITIVE MODEL OF MULTI-SENSORY JOINT ATTENTION IN HUMAN ROBOT COLLABORATIVE TASKS

O. ELDARDEER, G. SANDINI, F. REA
Background

Different attention computational models *

Few are addressing cooperative task

Neglecting the mutual presence

Our Research Goals

ASSESSMENT DURING ATTENTION PROCESS

CONSIDER THE MUTUAL PRESENCE

COMPARE THE BEHAVIORS
OUR CONTRIBUTION

1. Integration (Audio + Visual)
2. Acyclic extraction of a saliency (hot point)
3. Retinotopic response projection into allocentric spatial representation
THE EXPERIMENT

• Stimulation
 • 3 location Audio only
 • 1 location Audio + visual

• Temporal Stimulus
 • 240 Hz audio signal
 • Blue color

• Running the experiment
 • 6 subjects
 • 32 rounds each
 • 10 sec. on / 10 sec. off
RESULTS (ERROR COUNT)

• Compared error count between the human and the robot in A+V trials
• Significant deference in audio only trials
RESULTS (REACTION TIME)

• Wide Variability in RT for the robot
• Compared RT in average
• The robot isn’t as accurate as the human
RESULTS (HOT POINT MEASURE IN A+V)

• Swift increase when the stimuli is presented
RESULTS (LOCATION ERROR IN A+V)

- Error drop when the stimuli is presented
- < 0.1 error in most of the on time on average
- Error rise again when the stimuli is off
CONCLUSION

• Importance of joint attention
• It is difficult task for the robot
 • Reaction time
 • Localization accuracy
• Comparable robot and human performance when auditory and visual stimuli is presented
• Localizing the auditory stimuli is challenging
THANK YOU!

Omar Eldardeer
omer.eldardeer@iit.it

Giulio Sandini
giulio.sandini@iit.it

Francesco Rea
francesco.rea@iit.it