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Abstract— While vision in living beings is an active process
where image acquisition and classification are intertwined to
gradually refine perception, much of today’s computer vision
is build on the inferior paradigm of episodic classification of
ii.d. samples. We aim at improved scene understanding for
robots by taking the sequential nature of seeing over time
into account. We present a supervised multi-task approach to
answer questions about different aspects of a scene such as the
relationship between objects, their quantity or the their relative
positions to the camera. For each question, we train a different
output head which operates on input from one shared recurrent
convolutional neural network that accumulates information
over time steps. In parallel, we train an additional output head
using reinforcement learning (RL) that uses the reduction in
cumulative loss from the supervised heads as reward signal. It
thereby learns to gradually improve the prediction confidence
of e.g. partially occluded objects by moving the camera to a
more favourable angle with respect to these objects. We present
preliminary results on simulated RGB-D image sequences that
show superior performance of our RL-based approach in
answering questions quicker and more accurately than using
static or random camera movement.

I. INTRODUCTION

The computer vision revolution of recent years has been
driven in great parts by convolutional neural network (CNN)-
based object detection approaches that can find and label
entities in images [33], [17], [40]. However, the capabilities
of these systems are still far from actual human perception.
This is for example evident in (a) the absence of specific
memory in wide-spread models such as [37], [18] that would
allow a system to accumulate knowledge over multiple time
steps and lead to object permanence [28]; or (b) the inability
to actively move the camera in order to improve the current
understanding of the scene and increase the chances for
a successful classification of present objects [16]. Actively
controlling the camera to obtain a deeper understanding of
the environment would be especially valuable in modern
robotic use cases such as [7], [3], where perception and ac-
tion are closely connected and an advanced understanding is
necessary that goes beyond pure detection and classification.
While traditionally handcrafted mappings or SLAM tech-
niques have been used [11], the rise of deep neural networks
enables new possibilities that allow for going more human-
like paths [27], [5], [13]. This stimulates a fundamental
rethinking of the predominant approach to computer vision
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that works on i.i.d. samples [16] by rather taking inspiration
from the human brain [34].

Research suggests that the internal scene representation of
the human brain is created by different recurrent connections
between the primary visual cortex (V1) and regions like
the lateral geniculate nucleus (LGN) or the lateral occipital
complex (LOC) [36], [10]. This representation forms the
basis for two different streams of processing, that, roughly
speaking, perform object classification on the one hand (the
“ventral stream” that is hierarchically organized to classify a
large number of shapes using different levels of abstraction)
and object localization on the other hand (“dorsal stream”
with limited temporal memory that is not needed for short-
term spatial mapping) [35].

In this paper, we present an active vision approach based
on a neural network architecture that is inspired by the above-
mentioned properties of the human visual system: a backbone
consisting of a CNN-recurrent neural network (RNN) enables
hierarchical scene decomposition and attention over multiple
time steps; it feeds its learned representation into multiple
output heads to perform different tasks like localizing and
classifying objects as well as to control the movement of the
camera for the next time step. Our main contributions are
(a) a novel multi-headed deep neural architecture to achieve
object permanence for improved scene understanding; and
(b) a combined supervised and reinforcement learning (RL)
approach to end-to-end train the system by feeding the over-
all reduction of loss of the supervised heads as the reward
signal into the RL-based camera control head. Our results
on rendered scenes of primitive objects show significant
improvement over passive vision systems when answering
questions like “what object is stacked onto the red cube”:
higher success rate in answering correctly is reached with
much less subsequent frames, i.e., quicker and better per-
ception is performed.

II. RELATED WORK
A. Neural Scene Understanding

Traditionally, the field of scene understanding is concerned
with acquiring a representation of a scene that makes down-
stream specialized tasks easier than if performed on raw sen-
sory input [32]. Creating such an intermediate representation
using neural networks has been an active area of research in
recent years. Eslami et al. [12] describe a system that creates
such a representation using a type of variational autoencoder
architecture. A shortcoming of this approach, however, is that
it needs fully specified 3D models for all present objects.
This is solved in their follow-up work [13]: with only a few



2D input images and their corresponding viewpoints in a 3D
scene, the presented Generative Query Network (GQN) is
capable of synthesizing renderings from previously unseen
viewpoints within the scene. With an increasing number of
input images, the quality of the synthesized output image
improves and its uncertainty decreases. The approach uses
two networks, the first one aggregating the data of the input
images into a compressed scene representation and the sec-
ond one producing a rendering based on this representation
and an additional input, which is the desired camera position
for rendering by sampling from the scene representation
vector. The authors also use the learned representation as
input for RL-based robotic grasping, achieving a four times
higher sample efficiency than when using raw pixel input.
The resulting renderings, however, come at the price
of requiring large quantities of training data. For each of
the four presented experiments, at least 2 million training
scenes have been used. Collecting comparable numbers of
real-world data would hardly be achievable in reasonable
time. Additionally, the process is simplified considerably by
providing the system with coordinates of the collected input
images. We think that a system should be capable of inferring
this change in perspective on its own by using just temporally
correlated images that have been acquired in sequence.

B. Active Vision

While a large number of use cases in computer vision
assume a stationary camera or given image sequences, in-
cluding [12], [13], the field of active vision deals with cases
where the system is embodied in an active agent and can
manipulate the viewpoint in order to perceive more complete
information from the scene [1], [9], [8]. For humans, it is
natural to catch glances from as many different angles as
necessary, subject to availability, in order to reduce remaining
uncertainty and thereby obtain a more complete mental
representation of a scene or object. The same is useful for
robots [26], [22].

Cheng et al. [4] for example apply RL for the combined
control of a robotic gripper and an active camera. By using
actor-critic algorithms [23], [29], their system can pick up a
target object even in the presence of distractor objects that
may occlude the direct line of sight. By training to move the
camera and pick up the target, the system implicitly learns to
understand how relevant a certain feature in the scene is. This
process of focusing on important things while discarding less
relevant input information is also known as visual attention
[21], [42]. We think that visual attention and active vision are
closely related because attention can steer the focus to areas
which are not yet known well. Humans for example deal
with areas of missing information by using eye movement
and change of viewpoint as forms of active vision.

By focusing on specific areas of a scene, the process
of active vision is very close to the attention mechanism
described by Mnih et al. [30]. Here, the authors perform digit
classification on the MNIST database [25]. Using a RNN,
the focus is moved to specific sections of the input image
in form of windows of different size all centered around a

Fig. 1. An example scene with occlusion from our experiments, including
the designated camera positions from which the scene can be observed.

specific location: the inner-most window (having the smallest
size) can be considered as the equivalent to the human foveal
image. The outer windows get down-sampled to the same
size as the inner-most one and, having then lower resolution,
can be compared to peripheral vision. To avoid the need for
a sliding window that scans the whole picture, the approach
uses RL to find the next region to focus on. Our active
vision approach builds on similar concepts, but instead of
moving a window of attention around a pre-acquired image,
it controls the actual acquisition in a feedback loop with
object detection.

III. OUR APPROACH
A. Scene Setup

The proposed approach operates on sequences of RGB-
Depth (RGB-D)-input images, each having a resolution of
4x128x 128 pixels. We create a synthetic test bed of training
and test images using the 3D rendering software Blender
[6] as follows: per scene, we perform a circular camera
trajectory around a randomly arranged group of primitive
objects and capture 36 images, all with the camera pointed
towards the center of the group as visible in To
simplify learning, we assign a unique combination of color
and shape to each object, so that it can be clearly identified
during the training period. We place some objects on top
of each other (but not more than two). Notably, we do not
provide any information regarding the camera position to
the system. Instead, we expect the system to infer its own
position based on the percept history in the current scene.

As training data, we create 20,000 example scenes for
each of two different basic scene setups: one with an oc-
clusion object in the center of the scene (see Figure [I)), and
one without. Ground truth is obtained from the rendering
software first as a global position for each object. Using the
per-frame world matrix of the camera base, these positions
can be transformed into relative positions. Besides this world
matrix of the camera base, other information like the screen
space position of each object is also saved for each frame.
This allows us to query the same input sequence on a
large number of different tasks such as an object’s location
(“what is on top of the blue cylinder?”), properties (“what
shape does the object below the yellow cube have?’) or
number of occurrences (“how many objects are present in
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Fig. 2. Our network architecture accumulates information over time in

the LSTM after extracting features using the CNN. The resulting scene
embedding vector feeds different output heads (2 out of 7 streams shown).

the scene?”). This forces the system to acquire a higher order
scene understanding instead of performing simple input-to-
output mapping. Notably, the whole data generation process
is performed prior to training purely for speed reasons. As
this means that all possible viewpoints are pre-rendered,
performing active vision in our setup means to chose a
camera trajectory by sequentially selecting which image from
the 36 available ones of the current scene to see next.

B. Accumulating Information About a Scene

To create a persistent scene representation over multiple
time steps, we use a 5-layer CNN with LeakyReLu activation
[41] for feature extraction and one layer with 2048 LSTM
[19] units for accumulating information. This is followed by
a block of 4 fully connected layers with LeakyReLu activa-
tion and batchnorm [20] before and after the block, which
produces the 2048-dimensional scene embedding vector s.
This vector is recalculated on every time step ¢ and should
contain more and more detailed information regarding the
scene at hand. Scene embedding vector s; is then picked
up by the different task-specific output heads that we call
“streams” (see examples in Figure [2) to answer questions
about the scene like “given color and shape, at what position
(relative to the camera base) can a respective object be
found?”. We overall train 7 different streams that are capable
of answering questions about objects and their relations.

The most complex output head called the Enumerating
Stream outputs all found objects with their positions, shapes
and colors. As the number of objects in the scene is not
always the same, we use another LSTM network within this
head that outputs one object at a time and whether there
are any more objects to unroll on each step. To pair ground
truth and predicted objects we use the Hungarian method [24]
to minimize the total distance between actual and predicted
positions of all objects.

C. Active Vision as a Reinforcement Learning Problem

With the goal, environment and basic model architecture
for scene understanding defined as above, we can now
formulate the task of active vision as the RL problem of
reducing the remaining amount of uncertainty in the system’s
answers with each time step as much as possible. We can
define that uncertainty J; at time step ¢ as the sum of the
loss of all output heads at said time step:

g S = Number of streams

0; = Z Li with L! =Loss of stream n at time step i

n=0 0; = Uncertainty on time step ¢

We use ; to encode the desirability of uncertainty reduction
in the reward R; at time step ¢ as follows:

Ri = 0i—1 — 6

During training, we now select a random starting point for
every trajectory (scene) and give the RL algorithm 7 different
actions U to choose from, where positive values indicate
steps to the right and negative values steps to the left.

U ={-5,-2,—1,0 (stay here),+1,+2,+5}

When for example the agent chooses the +5 action, the next
input frame will be the one 5 steps to the right, relative
from the current input image’s camera position (we include
the “stay here” option to give the system the opportunity
to focus on different aspects of the same input). Then, we
let the Q-learning algorithm [31], [39] operate on the scene
embedding vectors s; as representations of the current state.

To implement this, we add another output head with output
size 7 (our action space) for the g-values g(u, s) of action u
in state s. At each step of a training episode, we take actions
e-greedy according to the current g-function with a decaying
€; =0.9999 -¢;_1 and g9 = 1 to trade off exploration with
exploitation over the training epochs j. The g-function is
updated after every episode based on the reward values from
these Monte Carlo roll-outs up to the terminal time step T’
as follows:

T—1
q(ui,si) = > V' Rive
t=0

To update the network, we use the squared difference be-
tween the predicted g-value and the Monte Carlo roll-out
reward as loss value.

The training process takes place simultaneously for the
supervised and the RL stream(s) by running each episode for
exactly 14 time steps. The calculated loss of the supervised
streams is not only used for their training using backpropa-
gation, but also serves as input for the reward calculation
to improve the RL stream. With ongoing training of the
supervised streams, this loss changes, which means that the
RL algorithm needs to deal with a highly non-stationary
environment. However, this should not be a problem for
the algorithm as it does not rely on experience replay [15].
On the downside, this leads to a lower sample efficiency
of the training since the possibility of reusing previously
seen episodes is missing. Furthermore, it complicates the
evaluation of the active vision results in isolation since
improvements in the supervised tasks could be either due to
improvements of the RL policy or to the ongoing training
of the supervised streams themselves. Consequently, it is
necessary compare any learned policy with fixed or static
types of camera control to measure success.
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Fig. 3. Performance for different types of camera control. The proposed
method outperforms all other types significantly, as seen in a higher success
rate for object enumeration after the least amount of seen frames.

IV. RESULTS
A. Active Versus Passive Vision

To evaluate the approach, we follow 14 steps-long tra-
jectories over the 36 captured pictures for each scene using
different methods for selecting the next frame. At each point
in a trajectory, we evaluate the metric S we call “Success
Rate” based on our most sophisticated output head, the
Enumeration Stream:

#correctly identified

- #correctly identified + #incorrectly identified

Outputted objects that do not exist as well as objects that
do exist but have not been found by the system count as
incorrectly identified. Hence, the Success Rate is high when
both the recall and the precision of the result are high.
To measure the impact of the RL-based active vision, we
perform an ablation study using the following alternative
policies for camera control:

e Random policy: Randomly sampled actions from U.

o Static policies: On every time step, the camera moves

a fixed number of steps to the right.

e RL-based policy: Greedy according to highest Q-value.
shows that the system is improved by using active
vision, especially while seeing the first few frames. While
the static policies with +2 and +5 also perform decently,
the RL-based active vision achieves a head start and reaches
the maximum success rate after having seen only 5 frames.
Interestingly, the performance of the static 4-5-policy drops
after the 6! frame. This could be because the -+5-policy
actually performs more than one circle around the scene,
potentially confusing the system. The most constant per-
formance gain is achieved by the +2-policy. The proposed
active vision approach however is outperforming all of them
without relying on a fixed action for each time step.

B. Discussion

From this result, it can be concluded that the system
is indeed implicitly capable of dynamically calculating the

transformation matrix [14] to situate newcoming images into
the existing scene embedding, independent of the amount of
change in view point, and does not rely on any statically
learned matrix. Further research would however be required
to evaluate whether a similar performance would be possible
by following a trajectory that does not have the circular
shape as in the presented experiment. With data from this
experiment alone, however, it is evident that given enough
time and relatively simple camera trajectories, our system
can accumulate most of the desired information regarding
object permanence; it can do it even better and in less steps
if, additionally, active vision is used.

The benefit of the active vision system could be even
greater in more complex scenes where the camera can be
moved not only on a 1-dimensional trajectory, but in 2 or
even 3 dimensions instead: for example, the current approach
does not (and does not have to) care about objects that could
block the path of the camera. However, this could be the
case in reality and we conjecture that approaches that allow
more degrees of freedom would also learn ways to prevent
collisions with the environment.

One noteworthy finding of the evaluation is the fact that
seeing a larger number of potentially redundant frames does
not necessarily decrease performance: one could assume
that this could prevent the system from focusing on or
memorizing the important features. That this does not happen
becomes clear when comparing the success rate of the +1-
policy with that of the 4+2-policy: the performance of the +1-
policy after 12 frames is about the same as the performance
of the +2-policy after 6 frames.

V. CONCLUSIONS

We have presented a CNN-RNN-based computer vision
system inspired by neuroscientific results that is able to
achieve object permanence for improved scene understand-
ing, as is evident in its high success rate in answering de-
tailed questions about present objects and their relationships.
This is beneficial for example for autonomous robots when
grasping objects in unconstrained environments cohabited
by humans. We have further shown how this multi-headed
system could be improved by active vision through a RL
component that utilises the reduction in loss of the system’s
supervised output heads for its reward signal and learns
to act in a way that minimizes remaining uncertainty in
the scene embedding with each time step. Evaluation on
simple scenes shows that actively controlling the camera
significantly outperforms other types of camera control.

As all experiments are solely performed on primitive syn-
thetic data, further research is required to evaluate whether
the approach also works in more complex scenarios with
3D camera trajectories and ultimately in the real world,
especially in cases with heavy noise on the depth channel of
the input frames as produced by commercial sensors. Other
real-world challenges include data and label availability [38],
[2]. Additional future work lies in modifying the reward
function to favor trajectories which require less resources
(or risk) from an embodied agent.
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