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Abstract— Shared autonomy aims at combining robotic and
human control in the execution of remote, teleoperated tasks.
This cooperative interaction cannot be brought about without
the robot first recognizing the current human intention in a fast
and reliable way, so that a suitable assisting plan can be quickly
instantiated and executed. Eye movements have long been
known to be highly predictive of the cognitive agenda unfolding
during manual tasks and constitute, hence, the earliest and most
reliable behavioral cues for intention estimation.

In this study, we present an experiment aimed at analyzing
human behavior in simple teleoperated pick-and-place tasks in
a simulated scenario and at devising a suitable model for early
estimation of the current proximal intention, that is either the
reaching target or the place-down location. We show that scan
paths are, as expected, heavily shaped by the current intention
and that a Gaussian Hidden Markov Model achieves a good
prediction performance, while also generalizing to a new object
configuration and new users. We finally discuss how behavioral
and model results suggest that eye movements reflect to some
extent the invariance and generality of higher level planning
across object configurations.

I. INTRODUCTION

Shared autonomy has recently emerged as an ideal trade
off between full autonomy and complete teleoperation in
the execution of remote tasks. The benefits of this approach
rely on assigning to each party the aspects of the task for
which they are better suited. The lower kinematic aspects
of action execution are usually left to the robot while
higher level cognitive skills, like task planning and handling
unexpected events, are typically concurrently exercised by
the human, in a blend that can entail different degrees of
autonomy for the robotic part ([1], [2], [3]). Considering the
often large asymmetry in terms of degrees of freedom or
kinematic capabilities between the user input controller (e.g.
joysticks) and the robotic effector, shared autonomy eases
the operator cognitive load and speeds up execution. Since
the user is setting the goals and the ways to achieve them,
this collaborative effort relies on the robotic partner to first
recognize the current human intention (intent recognition)
and only afterwards to decide how much to assist with
the execution (arbitration). Intention recognition should thus
happen as early and as naturally as possible in order for
the user to be relieved of explicitly directing the robot and
for the robot to timely initiate the assisting action. To this
end, although a number of approaches have been proposed
that rely on intent recognition from the user control input
driving the robotic movement ([4], [5], [6], [7], [8], [9]),
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Fig. 1: The experiment was carried out in a simulated
scenario. The Gazebo simulator features physics and a virtual
sensor, with its measurements shown on the screen. The user
controls the Pick-and-Place-Task with a HTC Vive controller,
tracked by the Vive Lighthouse system. At the same time,
the Vive controller and a Pupil Labs eye-tracking system are
used to estimate the human state.

the most natural and timely way to predict intention both in
assistive technologies and remote manipulation is certainly
to use gaze cues, as reviewed in the next section. In light
of the need to cope with sensorimotor delays [10], gaze
control itself in task-based scenarios can be considered as
inherently predictive of a number of action-relevant aspects.
Indeed, in moving our eyes we make use of knowledge-
and sensorimotor-based experience ([11], [12], [13], [14])
to quickly retrieve the information needed to plan the next
limb motion.

In this preliminary study we focus on gaze-based intention
prediction in teleoperating a robotic gripper in a simulated
scenario, in order to investigate human eye-hand coordination
under these conditions and devise an intention recognition
model to be later transferred to a real world shared au-
tonomy scenario. As a first setup for object manipulation
we concentrate on basic pick-and-place tasks as common
in this kind of architectures ([15], [5], [16], [17], [18]).
Presented contributions are a behavioral assessment of eye-
hand coordination in such scenarios and an instantiation of
a Hidden Markov Model trained on collected data, showing
good generalizability across users and task configurations.

In the next sections, related work on gaze-based intention
recognition is first reviewed; the experimental methods used
in our setup and the devised models are further presented,
followed by results obtained from behavioral analysis and
model testing. We conclude discussing emerged implications
and future perspectives.



II. RELATED WORK

That the task shapes the way we look at the world has
long been known, as shown in [19]. In that study, it was
shown that depending on the question the viewer was trying
to answer different scanning patterns were produced on
the very same image. A number of studies have replicated
and confirmed Yarbus’ experiment and managed to invert
the process and estimate the task from eye data above
chance level (e.g., [20], [21], [22]). The most popular and
effective techniques to compute the probability of a given
task given eye movements and possibly their sequence
entail Naive Bayes classifier, Hidden Markov Models,
SVM, multivariate pattern analysis and random forests (see
for a more complete review [23]). The largely increased
diffusion of wearable cameras and eye-trackers in recent
years has triggered research on daily activities recognition
as observed from an egocentric perspective [24], [25],
[26], hence relying on eye, hand, head and possibly body
coordination (see [27] for a full review). Yet the approaches
above are concerned either with passive information-seeking
or with activity recognition rather than with simple action
or intention recognition. In human-robot collaboration often
the robot partner is aware of the activity context and for
effective cooperation it just needs to detect the current action
intention of the human partner in order to help them with it.
Indeed, there are two basic types of intention [28]: a mental
state of an intention for the future (distal intention) and
intentionality for an immediate action (proximal intention).
From a temporal perspective a proximal intention is very
close to the executed action. Thus, the boundary between
intention recognition and action recognition is very blurry.
The later an intention is recognized the more advanced
might be the execution of an action.

Huang and Mutlu [29] have proposed a method for antic-
ipatory control which allows a robot to predict the intent of
the human user and plan ahead of the explicit command. In
the task considered, a robotic arm prepares a smoothie by
picking the ingredients selected vocally by a human user
looking at an illustrated list. By means of eye tracking
the robot infers the user intention before they utter it and
anticipates picking the intended ingredient: an SVM was fed
a feature vector of gaze features for each ingredient, such
as the number of glances, duration of the first glance, total
duration and whether it was the most recently glanced item
as predictors of the currently intended ingredient. Although
such an approach seems simple and effective in this case the
human user was carrying out no parallel visuomotor control
task that could yield spurious fixations.
Haji Fathaliyan and colleagues [30] propose a method to
localize gaze on 3D objects by projecting the gaze vector
on point cloud rep- resentations of objects manipulated by
a person preparing a powdered drink. The authors produced
then 3D heat maps displaying the most gazed locations on
each object depending on the performed subtask. By means
of Dynamic Time Warping barycentric averaging, sequences

of gazed objects were obtained encapsulating the typical
temporal patterns of object interaction that could be used
for action recognition.
Within shared autonomy approaches, as a first attempt at
integrating gaze input from the user, Admoni and Srinivasa
[31] put forward a proposal relying on Javdani’s framework
[5], where the probability distribution over the goals (hidden
states) is updated by considering both user’s eye movements
and joystick commands as observations in a POMDP, using
hindsight optimization to solve it in real time.
In a further study [32], the authors present a preliminary
eye-tracking experiment aimed at comparing user behavior
within-subjects in different teleoperation modalities, namely
with more or less autonomy. In the scenario of an assistive
robot arm spearing food bits from a plate to feed an impaired
user, by looking at partly manually annotated gaze behavior,
two patterns of fixations emerged: monitoring glances, meant
to check the translational behavior of the arm approaching
the intended food morsel, and planning glances, which select
the target morsel before starting the arm actuation, as in
natural eye-hand coordination ([33], [34]). In the context of
assistive robotics, a number of studies have also considered
gaze information (also combined with multimodal interfaces
such as BCI and haptic feedback) to operate robotic limbs
and wheelchairs ([35], [36], [37])

To investigate human oculomotor behavior during teleop-
eration in a more controlled scenario and with a more natural
input interface, we designed an experiment in simulation,
where the participant would control the remote robot arm by
means of their movement via motion tracking. We reasoned
that this would produce more natural scanpaths and reaching
behavior, without the cognitive overload of a controller with
few DOFs. These behavioral cues were collected to train a
proof-of-concept model able to predict the current intention
in pick-and-place tasks, to be later deployed in a real-world
setup.1 Since many teleoperation scenarios relay visual input
through a camera, we displayed the scene on a screen and
used eye tracking glasses to retrieve the point-of-regard
(POR) on the 2D display.

In a very recent study [38] considering object aligning
tasks in Virtual Reality, it was shown how already simple
features such as the proportion of PORs on distinct Areas-of-
Interest (AoIs) within the objects could constitute a sufficient
oculomotor signature to discriminate between four different
tasks, which could be classified well above chance.

In our approach, since we plan to work with multi-
ple objects and to recognize different sequential sub-tasks,
we chose to model scanpaths via Hidden Markov Models
(HMM), which present the benefit of considering the tem-
poral dimension of the gaze shifts and can better deal with
spurious fixations and gaze samples and varying eye tracking
frequency ([39], [40], [41]).

1To avoid confusion with terms sometimes used interchangeably, some-
times meaning different things, we here refer to task as the overarching
ongoing activity, e.g. pick and place, while intention implies the commitment
to perform the current proximal action/sub-task, e.g. reaching to grasp.



(a) Lined-up Arrangement (b) Triangle-Shape Arrangement

Fig. 2: Example of a scene used in each trial. The objects
to pick up were displayed on the left side in 3 different
colors while the disc on the right could similarly appear at
each of 3 positions on the right side. The color of the disk
signified which cylinder was to pick up, the position of the
disk denoted the position for the placing down.

III. EXPERIMENTAL METHODS

A. Participants

This study has been conducted after the outbreak of the
CoViD-19 pandemic. Hence, thus far, a number of partici-
pants suitable for this kind of study could not be recruited
and to minimize infection risks only associates of the Honda
Research Institute participating in this project were asked
to take part in data collection on a voluntary basis (N = 4,
including the authors). We complied with the measures of the
Occupational Safety and Health Standard emanated by the
German Federal Ministry of Labour and Social Affairs by
keeping a safe distance and wearing face masks. The study
was approved by the Bioethics Committee of Honda.

Participants had normal or corrected-to-normal vision,
were all right-handed and gave informed consent to partici-
pating in the study.

B. Experimental setup and procedure

The experiment was carried out in a simulated scenario
created with the Gazebo Simulator (see Fig. 1). The scene
was captured with a virtual sensor and displayed on a wide
screen (1.21 m × 0.68 m) with HD resolution in front of the
participant, who was standing at a distance of about 1.5 m.
Participants wore a binocular Pupil Core eye-tracker by Pupil
Labs, working at 100 Hz with a reported accuracy of 0.6 ◦.
They also held in the right hand the HTC Vive controller,
tracked by the Vive Lighthouse system for input control in
the teleoperation task. All physical devices and surfaces were
sanitized after each use.

After instructions, participants were required to wear the
eye tracking glasses, to adjust the eye and scene cameras
according to the experimenter directions and to perform a
5-points calibration.

The experimental stimuli consisted of 3 cylinders pre-
sented in two configurations (in different blocks): either
aligned on the left side of a table (numbered as follows:
0 for the top, 1 for the middle, 2 for the bottom of the table)
or at the vertices of a virtual triangle (0 for the top vertex,
1 for the bottom right, 2 for the bottom left; see Fig. 2).
Colors were permuted anew in each trial. Along with the
cylinders a disk would appear on the right side of the table,

at one of three positions (denoted as: 0 top, 1 middle, 2
bottom). The disk specified the current pick-and-place task:
the color indicated which cylinder to pick up and the position
of the disc where the cylinder had to be placed down on
the table. The task would be executed by a robotic gripper
in the virtual scene, operated by the participant movements.
Participants were required to reach with the controller in
their hand toward the target and to pick it up by pressing
the button on the controller under the index finger. They had
then to move the cylinder to the other side and release it on
the place position, in so ending the trial. Between trials a
resting time of 5 s was given, followed by a fixation cross
and indications on how to move the controller back to the
rest position. As soon as the controller reached the starting
position, the next trial started.

C. Design and data processing

We designed two different arrangements of the cylinders:
First, a basic arrangement features three cylinders lined up
on the left hand side of the table (see Fig. 2a). Second, the
cylinders are arranged in a triangle. Thus, we can investigate
the impact of the spatial arrangement of the items on the gaze
behavior.

In each trial the target pick and place positions are
randomly generated. Instead of working with relative eye
coordinates, we used the fiducial markers and the scene
camera of the Pupil Labs device to localize the eye-tracking-
glasses in the scene w.r.t. the world and screen, respectively.
Fixations represent a very popular cue in eye-movement
data analysis and might seem an obvious choice in this
intention estimation application. The parameterization of
a fixation identification method, however, might be very
arbitrary. Usually, it is not clear and agreed on, when exactly
fixations start and when they end. Thus, the parameters of a
fixation identification algorithm can have a dramatic impact
on our higher-level analyses [42]. Further, the system will
be required to work online eventually and online fixation
recognition is not always accurate while further increasing
the computational load. The temporal information related to
dwelling time in the AoIs (the objects of interest in the scene)
during fixations is still learnt and considered by the HMM
all along.

For these reasons, we decided to work with gaze samples
that were mapped on the scene according to the following
approach: A heatmap with a discrete resolution represents
the hemispherical field-of-view of the participant. In this
case a sampling of 1 ◦ is used and the heatmap comes with
a resolution of 180 px by 90 px. The user’s eye gaze g is
represented by a two-dimensional normal distribution and
the density is plotted onto the heatmap with gaze uncertainty
σ and direction µ .2 As an example: A gaze collinear with
head orientation comes with a density maximum plotted in
the center of the heatmap. The size of σ depends on the
accuracy and precision of the eye tracking measurements.

2The gaze was mapped in this way since in a later stage we plan to move
the simulation into a virtual reality headset with embedded eyetracking and
the gaze mapping on the scene can stay unaltered.



Fig. 3: The user’s field-of-view is approximated by a hemi-
spherical heatmap. The density of a 2d normal distribution
centered on the point-of-regard represents the gaze and its
uncertainty. The surface integral over the triangles of a
certain object is the likelihood of this AoI.

We set σ = 2 ◦ which is in accordance with the size of the
human fovea. All potential scene objects are represented as
triangle meshes with a bounding box made of at least 12
triangles. The pose of the objects is known from a scene
understanding module and given the localization of the eye-
tracking glasses the object poses can be transformed into
the head coordinate system. Triangles, that are visible to
the user (i.e. normal of triangle directed towards user), are
plotted into the heatmap. The surface integral of the density
function represents the likelihood that this area has been
regarded by the user. The complete likelihood (of each object
to be regarded by the user) is the sum of all visible triangles
the object is made of. In order to not overemphasize large
objects, all likelihoods are normalized by their visible areas.
For each object an Area-of-Interest was defined, for a total
of 7 AoIs: for the picking objects the areas {a0,a1,a2}, for
the placing positions the areas {b0,b1,b2}, plus an area R
for the robotic gripper.

As a result, this so-called Area-of-Interest-analysis pro-
vides for every gaze sample g a feature vector F entailing
the likelihood computed for each of these AoIs:

Ft = {P(AoI = a0|gt),P(AoI = a1|gt), ...} . (1)

These were logged along with the current hand position
and robot gripper position and with the current grasping state
(defined as the binary state of the grasping button). Moreover,
each trial was labeled with a Boolean feature to state if it
was successful. Indeed, if the grasp failed for any reason
multiple grasp attempts could be observed or none at all if
the cylinder was toppled down and fell off the table.

D. Modeling Intentions with a Gaussian HMM

Our approach aims at predicting the proximal intention,
i.e. the current action and the involved object.

Gaze not only comes with a specific pattern during action
execution but also provides early cues that indicate parame-
ters of a pick and place task, such as which object to pick
or where to place it down. These parameters are defined

Fig. 4: Exemplary Gaussian Hidden Markov Model for a
Pick-and-Place-Task. d refers to the state transition prob-
abilities and the hidden states X might be looking at the
object to be picked, at the robot or at the placing position
target. e refers to the emission probabilities for the possible
observations Y , e.g. looking at the robot, the objects in the
scene {a0,a1} or the release goal position b0.

Fig. 5: The observations made in the last ∆t seconds are
used to compute the log-probability of these observations
under each of the trained GHMMs. The log-probabilities
(presented on the vertical axis of the plot) are an indication
for the respective intention (lighter color represent higher
probability). The length ∆t of the time window decides on
the accuracy and the earliness of the intention predictions.

by the proximal intention. The temporal gaze pattern can
be represented with a Hidden Markov Model (see Fig. 4).
The hidden states X(t) describe the internal intention process
and might relate to looking at the target object or looking
at the placing position. However, this is just an assumption,
while the hidden Markov process drives an observable gaze
sequence Y(t). The gaze sequence is described by the
AoI likelihoods as derived from the multivariate Gaussian
distribution (see Sec. III-C). The distribution of these AoI
likelihoods at a particular time is governed by the emission
probabilities of the hidden Markov process given the state of
the hidden variable at that time. This approach is independent
of the gaze sequence length, i.e. observation sampling and
execution velocity, as long as the sequences are scaled
linearly.

We defined 6 intentions to be recognized: 3 pick-up
intentions (for each of the 3 cylinders) and 3 place intentions
(for each of the 3 placing positions). Hence, 6 HMMs have
been configured with 5 internal states. The observation vector
of a HMM comprises 8 components: the AoI likelihoods
of the 3 cylinders, the AoI likelihoods of the 3 possible
placing positions, the AoI likelihood of the robot, and the



trigger button state of the Vive controller. The transition
and emission parameters were learned for each HMM given
between 19 and 31 observations sequences (for a total of 160)
for the respective actions collected from 2 users. The training
is done offline with data only from the lined-up arrangement
and successful pick-and-place tasks.

Fig. 5 sketches the online intention recognition approach.
At every time step t the observations from the last ∆t seconds
are used to compute the log-probability of these observations
under each of the trained HMMs. The HMM with best log-
probability exceeding a given threshold (κ > 0) is taken as
prediction of the respective intention. If no model scores over
the threshold, no intention is confidently recognized. The
offline training and the online recognition are implemented
in Python with the help of the hmmlearn-library3.

The performance of this approach is tested on data from 4
users and between 17 and 28 observation sequences for each
intention, respectively (for a total of 128 sequences). The
testing data comprised unseen sequences from the two users
used for training plus sequences from two additional users.
Moreover, testing was done also on sequences from blocks
with triangular arrangement (between 19 and 33 sequences
for each intention, for a total of 156).

IV. RESULTS

A. Behavioral analysis

To get a better picture of the gaze behavior during the
presented task, we looked at some behavioral measures,
seeking confirmation of some of the patterns described in
[32]. Due to the low number of participants thus far, we
could not perform an inferential statistics analysis to test any
hypothesis, hence we report a descriptive analysis computed
over the whole dataset depending on the different tasks.

Two exemplary trajectories for different pick-and- place
tasks and object configurations are depicted in Fig. 6. At any
time, the AoI collecting the highest likelihood is considered
the one currently looked at. It can be noted that upon motion
onset the AoI corresponding to the place target (whose color
determines also the picking target) is glanced, that is, this
is a planning glance, as defined in [32], while afterwards
the gaze moves to the picking target. After picking, the gaze
moves to the placing target. During both the reaching to grasp
phase and the transport to place phase the robot AoIs (gray)
is checked in a monitoring pattern, to make sure the gripper
is moving in the intended direction.

For each trial we consider two intentions/(sub)tasks, one
picking and one placing intention, separated by the key press
triggering the grasping. To get a more complete overview of
the time the gaze spent in different AOIs across tasks, the
relative time distribution of gaze on each AoI was computed
and is presented in Fig. 7. To make the picture easier to
interprete, we considered that for each intention there are
actually just 5 semantic entities that can used to describe the
AOIs, namely: the pick target (e.g.a0 for pick 0), the pick
distractors (e.g.a1,a2 for pick 0), the place target (e.g. any

3https://hmmlearn.readthedocs.io

Fig. 6: Two exemplary trajectories of the hand during the
pick-and-place tasks (left: pick in position 2 and place in
position 0; right: pick in position 1 and place in position 1).
The movement samples are colored with the currently gazed
AoI (see legend). The square markers denote the picking and
placing positions, for clarity here denominated and colored
as the respective AOIs.

Fig. 7: Relative distribution of the time the gaze spent on
semantic AoIs across tasks for the lined-up (left) and the
triangle arrangement (right). In the pick tasks the respective
picking AoIs (pi target) are more looked at, in the place tasks
the respective placing AoIs (pl target).

of the bi AOIs depending on the current task), the place
distractors (e.g. any of the bi AOIs that are not the target).
Analogously for the place intention, the place target would
be the specific AOI related to that task, while the pick target
could be any of the picking positions and the distractors are
the pick and place AOIs that are not target of the trial.

As it can be noted, each task presents a relatively similar
distribution on a semantic level, with most of the time spent
on the current pick or place target, yet the distributions are
quite distinctive considering that each action target is the
AoIs related to the task (that is the corresponding ai position
in the pick tasks and the corresponding bi position in the
place tasks). In the pick tasks the the place target is briefly
looked at to learn the picking task, while in the place tasks
the pick target receive also some attention since, after press-
ing the button for the grasp and in absence of any haptic feed-
back, the gaze checks that the object is successfully moving
along with the gripper. Interestingly, in both configurations
and tasks also the robot effector receives a discrete amount of
gaze time. In normal eye-hand coordination the hand instead
is rarely looked at because proprioceptive information and
peripheral vision usually suffice to monitor it. This suggests
that in this teleoperation scenario the unusual sensorimotor



mapping from the arm and controller to the three-fingered
robotic gripper, especially considering the grasp pose, and
possibly some delay in the tracking make the user uncertain
about the effector movements and current pose. Participants,
thus, produced multiple monitoring glances [32] during the
movements to visually adjust the effector trajectory and pose.
However, in general the distributions looked rather distinctive
across tasks, suggesting that it could be possible to reliably
discriminate among them, while they looked rather similar
across picking configurations, hinting to the possibility to
generalize from one to the other. The pick distractors are
looked at especially during picking, since the gaze checks
the neighboring cylinders in order to decide the best grasp
and in order not to collide with them. This is especially the
case in the triangle configuration since the cylinders are all
close to one another. The place distractors do not receive
any attention since in each task only the target position was
made visible with a disk (see Fig. 2).

To gain further insight into the difficulty of the task, we
looked into the number of failed trials across picking tasks.
Error rates were computed for the three pick tasks in the two
configurations. The picking action in the lined-up (triangle)
configuration was successful in the 71.4% (68.6%) of pick 0
cases, 88.9% (88.6%) for pick 1 trials, and 79.6% (85.2%)
for pick 2. That is, the users could accomplish the task in
the vast majority of the cases, still a significant number of
failed grasps occurred when picking at position 0 in both
configurations.

This could be the case for different reasons: in the lined-
up configuration the 0 position is the rearmost and the
one requiring to stretch the arm until the furthest edge of
the table, yet 3D depth on a 2D plane is badly estimated,
especially in the virtual scene where size cues are more
difficult to gauge and the own body could not either be used
as reference; in the triangle configuration the 0 position is
closer to the user yet the other 2 blocks are placed in front
of it, requiring to pick the cylinder from above or -for a
right-handed user- trying to avoid the cylinder in position 1
going around it. The depth estimation difficulty could yet be
ameliorated in a virtual reality set-up.

A similar pattern emerges also looking at picking times
(considered as the time from start of the trial to the grasp
detected via button press). In this case we considered only
successful trials, since in a failed trial no grasp or more
than one grasp could occur. Looking at Fig. 8, it can be
noted again that the rearmost position requires the longest
reaching time. In the case of the triangle configuration, also
items in position 2 require a more careful movement, since a
right-handed person needs to mind avoiding the cylinder in
position 1 when approaching the cylinder in position 2 with
the open gripper.

B. Intention recognition

Fig. 9a shows the accuracy and predictability of the
intention recognition when using a time window of 0.9 s for
the lined-up arrangement. On average, the HMM with the
best log-probability being above the given threshold (κ > 0)

Fig. 8: Picking times across picking position for the two ob-
ject configurations. The rearmost positions requires a longer
reaching time in both configurations, also due to difficult
depth estimation. In the triangle configuration the forefront
position on the left (pick 2) requires a longer reaching

indicates the correct intention in 76 % of cases (chance
level = 16.7%). Predictability refers to the fraction of action
execution time where an intention is recognized (regardless
of whether right or wrong). Fig. 10a highlights the relation-
ship between time window ∆t, accuracy and predictability.
With a longer time window both the prediction accuracy
and the predictability decrease. A longer time window has
the effect to include more observation samples belonging
to a previous action rather than the current intention. This
is sketched exemplarily in Fig. 5. As a result, either the
log-probability threshold is not exceeded or an incorrect
intention is recognized. There is a maximum accuracy at
a time window of 0.9 s with a predictability of 80 %. That
is, after at least 20 % of the action execution the right action
is predicted in 76 % of cases. Given this earliness we can
speak of intention recognition.

Fig. 10b plots a similar relationship between time window
and performance for the triangle-shaped arrangement. The
optimal time window size here is 1.3 s with an accuracy of
72 % (chance level = 16.7%) and a predictability of 79 %.
The accuracy curve seems to be flattened, because the action
execution times in this setup come with a larger spread.
Especially, picking up the cylinders at positions 0 and 1
is more challenging and causes a longer execution time
compared to the other sub-tasks in this triangle setup. This
issue is apparent also in Fig. 9b with more distant whiskers
and extended boxes for pick 0 and pick 1.

Furthermore, the plots in Fig. 10 and Fig. 9 confirm the
observations described in Sec. IV-A. The gaze behavior
seems to be independent of the spatial arrangement of the
objects in the scene. This fact is very well represented
by the HMMs, which have been trained only on lined-up
arrangement data, but perform almost as well on the triangle
arrangement data.

Finally, Fig. 11 shows the confusion matrices for the two
tested spatial arrangements. It can be appreciated that when
the model delivers a wrong prediction it usually mistakes
neighboring picking or placing locations, but still identifies
the correct task.



(a) Intention recognition with ∆t=0.9s (lined-up) (b) Intention recognition with ∆t=1.3s (triangle shape)

Fig. 9: Accuracy and predictability of online intention recognition for lined-up arrangement and triangle shape arrangement.

(a) lined-up arrangement (b) triangle arrangement

Fig. 10: Relationship between time window (min = 0.1 s,
max = 5 s) and performance measures. Time window and
performance are inversely proportional to each other. There
is, however a maximum accuracy at time window ∆t=0.9 s
for the lined-up arrangement and ∆t=1.3 s for the triangle
arrangement, respectively.

V. DISCUSSION AND CONCLUSIONS

We presented a study aimed at investigating eye-hand
coordination and gaze-based intention recognition during
teleoperated pick-and-place tasks. The ultimate goal is to
transfer such intention recognition into a shared autonomy
architecture. To this end, in this first study data was col-
lected, analyzed and modeled in order to have on the one
hand a baseline characterization of user behavior in a fully
teleoperated modality, on the other hand to train a model
flexible enough to work with different users and in possibly
different settings.

The analysis of eye and hand behavior has revealed that,
although participants managed to successfully operate the
gripper in the pick-and-place task in most cases, still some
positions required more grasp attempts and longer reaching
times. This in part due to the impaired depth estimation on
the screen, however the difficulty in aligning the gripper with
the cylinder in the furthest position or in avoiding bumping
into cylinder 1 to grasp in position 2 in the triangular arrange-
ment required extra care and slowed down the movement.

Fig. 11: Normalized confusion matrices for the two picking
arrangements. Error are made mostly mistaking neighboring
locations but still classifying the task correctly.

Moreover, while the gaze behavior showed some similarities
with natural eye-hand coordination, e.g. locating and guiding
the hand to the target of the next proximal intention [43], we
found that both in the reaching and in the transport phase the
robot gripper was looked at for quite some time, differently
from what happens when grasping with the own hand.
This represents an indicator that the participant preferred to
visually monitor the gripper movement in the absence of
the usual proprioceptive coordination and tactile feedback.
Furthermore, the object held in hand was looked at also
after the grasping was triggered, again something that does
not happen in natural eye-hand coordination, since tactile
feedback confirms the expected contact event and successful
grasping [44]. In this teleoperation scenario instead the grasp
had to be confirmed visually, hence the gaze lingered on
the picked object and only after seeing the object moving
along with the hand it moved on to the next distal intention
(i.e. the placing position). These effects will be hopefully
confirmed as significant once more participants are tested.
Still, these kinds of measures offer an insight into the
user experience of the teleoperation task: as long as the
uncertainty about the task execution is high, the gaze is
less anticipative and lingers there where further information
needs to be acquired to carry out the task. Although some
of these issues could be mitigated with longer training,



allowing the user to master the new visuomotor mapping
and task [45], an intention recognition model embedded in
a shared autonomy architecture that could adjust the robot
movement and grasping pose to reliably produce the intended
grasp would shorten these training times, allow a more
natural eye-hand coordination and relieve the gaze system of
monitoring every sub-task unfolding and transition with extra
care. That is, an effective shared autonomy system would
be validated by shorter execution times, less failed grasp
attempts and more anticipative gaze behavior with less time
spent monitoring the grasped object and the robot gripper.
This would confirm that the user trusts the robotic partner to
correctly infer and assist with the current intention but that
their sense of agency is preserved, since they anticipate the
next subtask in their plan.

Apart from these considerations, as shown for a different
task [38], we also found that the gaze behavior was reliably
different across tasks and could be hence learnt and predicted
effectively. To this end a Hidden Markov Model was devised
for each of the intentions to be recognized, considering as
emissions the normalized likelihood of the gaze (represented
as a Gaussian distribution) to be on each of the objects in the
scene, including the robot hand. The system was trained on
pick-and-place tasks from 2 users and then tested on similar
sequences from the 2 users plus 2 other users. Considering
a time window of 0.9 s where emissions are accumulated
and then scored by the 6 HMMs, the model achieves a
well above chance accuracy across all tasks, returning a
prediction as early as after seeing 20% of the current action,
on average. Beside with different users, the generalizability
of the system was further tested on a different geometri-
cal configuration of the pick task, delivering comparable
accuracy and predictability. This suggests, as already the
similar semantic distributions of gaze time across tasks and
configurations, that there is a certain invariancy in the gaze
patterns, which are mainly shaped by the task at a higher
level. That is, at least in simple manipulation tasks and object
configurations, sequences of gaze glances at objects are more
heavily determined and constrained by the current subtask
structure, once the target is specified, rather than by the
contingent physical setup. That is, also the oculomotor plan
subserving and directing the motor plan seems to reflect the
syntactic structure of action [46].

These are promising results for the further development
of our intention recognition system and for its embedding in
a real-world shared autonomy scenario. Current and future
work is going to expand both the training and testing
with multiple participants as well as considering more and
different objects and tasks.
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