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Yet, we have this wandering eye… 
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The issue of devising a computational model of eye guidance as related
to visual attention - i.e. answering the question Where to Look Next? in a
formal way - can be set in a probabilistic Bayesian framework (see Table 3 for
a brief introduction). Tatler and Vincent [101] have re-phrased this question
in terms of Bayes’ rule:

posterior prob. of gaze shift︷ ︸︸ ︷
P (x | D) =

data likelihood under the shift︷ ︸︸ ︷
P (D | x)
P (D)

gaze shift prior︷ ︸︸ ︷
P (x) , (7)

where x = xF (t)−xF (t− 1) is the random vector representing the gaze shift
(in [101], saccades), and D generically stands for the input data. As Tatler
and Vincent put it, ”The beauty of this approach is that the data could come
from a variety of data sources such as simple feature cues, derivations such
as Itti’s definition of salience, object-or other high-level sources”.

In Eq. 7, the first term on the r.h.s. accounts for the likelihood of par-
ticular visual data (e.g., features, such as edges or colors) occurring at a
gaze shift target location normalized by P (D) the pdf of these visual data
occurring in the environment As we will see in brief, this first term bears a
close resemblance to approaches previously employed to evaluate the possible
involvement of visual features in eye guidance.

Most interesting, and related to issues raised in the introductory Section, is
the Bayesian prior P (x), i.e., the probability of shifting the gaze to a location
irrespective of the visual information at that location. Indeed, this term will
encapsulate any systematic tendencies in the manner in which we explore
scenes with our eyes. The striking result obtained by Tatler and Vincent [101]
is that if we learn P (x) from actual observer’s behavior, then we can sample
gaze shifts (cfr. Table 4), i.e.,

Fig. 7 An illustration of the use of the Bayes’ rule for inferring the bias of a coin on
the basis of coin tossing results. The prior probability P (θ) for the coin bias θ captures
the assumption that the coin is likely to be a fair one (the pdf is “peaked” on θ = 0.5).
However, 7 heads occur after 8 tosses. Such experimental result is captured by the shape of
the likelihood P (X | θ) strongly biased to the right. Bayes’ rule computes the posterior pdf
P (θ | X) by “updating” the initial prior through the “observed” likelihood (the evidence
term is not shown in the figure and it has been treated as a normalization factor to constrain
probabilities between 0 and 1)
.
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way can be conveniently set in a probabilistic Bayesian framework. Tatler and Vincent
[2009] have re-phrased this question in terms of the posterior probability density function
(pdf) P (r | W), which accounts for the plausibility of generating the gaze shift r = rF (t)�
rF (t� 1), after the perceptual evaluation W. Formally, via Bayes’ rule:

P (r | W) =
P (W | r)
P (W)

P (r). (2)

In Eq. 2, the first term on the r.h.s. accounts for the likelihood P (W | r) of r when
visual data (e.g., features, such as edges or colors) are observed under a gaze shift rF (t) !
rF (t+ 1), normalized by P (W), the evidence of the perceptual evaluation. As they put it,
“The beauty of this approach is that the data could come from a variety of data sources
such as simple feature cues, derivations such as Itti’s definition of salience, object-or other
high-level sources”. The second term is the pdf P (r) incorporating prior knowledge on gaze
shift execution.
The generative model behind Eq. 2 is shown in Fig. 3 shaped in the form of a Probabilistic

Graphical Model (PGM, see Murphy 2012 for an introduction). A PGM is a graph where
nodes (e.g., r and W) denote RVs and directed arcs (arrows) encode conditional dependen-
cies between RVs, e.g P (W | r). A node with no input arcs (for example r) is associated
with a prior probability, e.g., P (r). Technically, as a whole, the PGM specifies at a glance
a chosen factorization of the joint probability of all nodes. Thus, in Fig. 3 we can promptly
read that P (W, r) = P (W | r)P (r). The PGM in Fig. 4 represents the PGM in Fig. 3, but
unrolled in time. Note that now the arc rF (t) ! rF (t+ 1) makes explicit the dynamics of
the gaze shift occurring with probability P (rF (t+ 1) | rF (t)).

Fig. 3. The generative model in PGM form sup-
porting the Bayesian inference specified via Eq
2

Fig. 4. The dynamic PGM obtained by un-
rolling in time the PGM depicted in Fig. 3

The probabilistic model represented in Fig. 3 is generative in the sense that if all pdfs in-
volved were fully specified, the attentive process could be simulated (via ancestral sampling,
Murphy 2012) as:

(1) Sampling the gaze shift from the prior:

r
⇤ ⇠ P (r); (3)

(2) Sampling the observation of the world under the gaze shift:

W⇤ ⇠ P (W | r⇤). (4)

Inferring the gaze shift r when W is known boils down to the inverse probability problem
(inverting the arrows), which is solved via Bayes’ rule (Eq. 2). In the remainder of this
paper we will largely use PGMs to simplify the presentation and discussion of probabilistic
models.
We will see in brief (Section 3.2) that many current approaches previously mentioned can

be accounted for by the likelihood term alone. But, crucial, and related to issues raised in
Section 2.2, is the Bayesian prior P (r).
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the shift vector x(t). In practice, most models are more likely to be described
by a simplified version of Eq. 7:

posterior prob. of gazing at︷ ︸︸ ︷
P (xF | D) =

data likelihood under gaze at︷ ︸︸ ︷
P (D | xF )

P (D)

prior prob. of gazing at︷ ︸︸ ︷
P (xF ) , (14)

By careful inspection, it can be noted that the posterior P (xF | D) answers
the query “What is the probability of fixating location xF given visual data
D?”. Further, the prior P (xF ) accounts for the probability of fixating location
xF irrespective of the visual information at that location. The difference
between Eq. 7 and Eq. 14 is subtle. But, as a matter of fact, Eq. 14 bears no
dynamics. In probabilistic terms we may re-phrase this result as the outcome
of an assumption of independence:

P (x) = P (xF (t)− xF (t− 1)) " P (xF (t) | xF (t− 1)) = P (xF (t)).

To make things even clearer, let us explicitly substitute xF with a RV L
denoting locations in the scene, and D with RV F denoting features (whatever
they may be); then Eq. 14 boils down to the the following

posterior prob. of selecting location L︷ ︸︸ ︷
P (L | F) =

feature likelihood under location L︷ ︸︸ ︷
P (F | L)
P (F)

prior prob. of location L︷ ︸︸ ︷
P (L)

(15)
The feature-based Probabilistic Graphical Model underlying this

query (see Table 5 for a brief PGM overview) is a very simple one and is
represented on the left of Figure 11. As it can be seen, it is a subgraph of
the object-based model PGM (Figure 11, center), which is the one previously
discussed in Table 5 (compare to Figure 10).

Surprisingly enough, this simple model is sufficiently powerful to account
for a large number of visual attention models that have been proposed in
computational vision. This can be easily appreciated by setting P (F | L) =
const., P (L) = const. so that Eq. 15 reduces to

Fig. 10 A directed PGM
capturing the probabilistic
relationships among ob-
jects (O), spatial locations
(L) and observable fea-
tures (F ). Figure modified
after Dorr et al [31] and
Martinez-Conde et al [69]
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Fig. 4. The dynamic PGM obtained by un-
rolling in time the PGM depicted in Fig. 3

The probabilistic model represented in Fig. 3 is generative in the sense that if all pdfs in-
volved were fully specified, the attentive process could be simulated (via ancestral sampling,
Murphy 2012) as:

(1) Sampling the gaze shift from the prior:

r
⇤ ⇠ P (r); (3)

(2) Sampling the observation of the world under the gaze shift:

W⇤ ⇠ P (W | r⇤). (4)

Inferring the gaze shift r when W is known boils down to the inverse probability problem
(inverting the arrows), which is solved via Bayes’ rule (Eq. 2). In the remainder of this
paper we will largely use PGMs to simplify the presentation and discussion of probabilistic
models.
We will see in brief (Section 3.2) that many current approaches previously mentioned can

be accounted for by the likelihood term alone. But, crucial, and related to issues raised in
Section 2.2, is the Bayesian prior P (r).
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gree of stochasticity was controlled via the “temperature” parameter of the Metropolis
algorithm. The underlying eye guidance model was that of a random walker exploring the
potential landscape (salience) according to a Langevin-like stochastic di↵erential equation
(SDE). The merit of such equation is the joint treatment of both the deterministic and the
stochastic (variability) components behind eye guidance1.
This basic mechanism has been refined and generalized in [Boccignone and Ferraro 2013]

to composite ↵-stable or Lévy random walks (the Cauchy law is but one instance of the class
of ↵-stable distributions), where, inspired by animal foraging behaviour, a twofold regime
can be distinguished: local exploitation (fixational movements following Brownian motion)
and large exploration/relocation (saccade following Lévy motion). What is interesting, with
respect to the early model [Boccignone and Ferraro 2004], is that the choice between the
“feed” or “fly” states is made by sampling from a Bernoulli distribution, Bern(z | ⇡), with
the parameter ⇡ sampled from the conjugate prior Beta(⇡ | ↵,�). In turn, the behaviour of
the Beta prior can be shaped via its hyperparameters (↵,�), which, in an Empirical Bayes
approximation, can be tuned as a function of the class of perceptual data at hand (in the
vein of Le Meur and Coutrot 2016) and of time spent in feeding (fixation duration). Most
important, this approach paves the way to the possibility of treating visual exploration
strategies in terms of foraging strategies [Wolfe 2013; Cain et al. 2012; Boccignone and
Ferraro 2014; Clavelli et al. 2014; Napoletano et al. 2015]. We will further expand on this
in Section 4.

3.2. The unbearable lightness of the likelihood

We noticed before, by inspecting Eq. 2 that the term P (W|r)
P (W) could be related to many models

proposed in the literature. This is an optimistic view. Most of the approaches actually
discard the dynamics of gaze shifts implicitly captured by the shift vector r(t). In practice,
they are more likely to be described by a simplified version of Eq. 2:

P (rF | W) =
P (W | rF )
P (W)

P (rF ). (5)

The di↵erence between Eq. 2 and 5 is subtle. The posterior P (rF | W) now answers the
query “What is the probability of fixating at location rF given visual data W?” Further,
the prior P (rF ) simply accounts for the probability of spotting location rF . As a matter of
fact, Eq. 5 bears no dynamics.
In probabilistic terms we may re-phrase this result as the outcome of an assumption of

independence: P (r) = P (rF (t) � rF (t � 1)) ' P (rF (t) | rF (t � 1)) = P (rF (t)). To make
things even clearer, let us explicitly substitute rF with a RV L denoting locations in the
scene, and W with RV F denoting features (whatever they may be); then, Eq. 5 boils down
to

P (L | F) = P (F | L)
P (F)

P (L). (6)

The PGM underlying this inferential step is a very simple one and is represented in Figure 5.
A straightforward but principled use of Eq. 6, which has been exploited by approaches that
draw upon techniques borrowed from statistical machine learning [Murphy 2012] is the
following: consider L as a binary RV taking values in [0, 1] (or [�1, 1]), so that P (L = 1 | F)
represents the probability for a pixel, a superpixel or a patch of being classified as salient.
In the case the prior P (L) is assumed to be uniform (no spatial bias, no preferred loca-

tions), then P (L = 1 | F) ' P (F | L = 1). The likelihood function P (F | L = 1) can be

1Matlab simulation is available for download at http://www.mathworks.com/matlabcentral/fileexchange/
38512-visual-scanpaths-via-constrained-levy-exploration-of-a-saliency-landscape
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the shift vector x(t). In practice, most models are more likely to be described
by a simplified version of Eq. 7:

posterior prob. of gazing at︷ ︸︸ ︷
P (xF | D) =

data likelihood under gaze at︷ ︸︸ ︷
P (D | xF )

P (D)

prior prob. of gazing at︷ ︸︸ ︷
P (xF ) , (14)

By careful inspection, it can be noted that the posterior P (xF | D) answers
the query “What is the probability of fixating location xF given visual data
D?”. Further, the prior P (xF ) accounts for the probability of fixating location
xF irrespective of the visual information at that location. The difference
between Eq. 7 and Eq. 14 is subtle. But, as a matter of fact, Eq. 14 bears no
dynamics. In probabilistic terms we may re-phrase this result as the outcome
of an assumption of independence:

P (x) = P (xF (t)− xF (t− 1)) " P (xF (t) | xF (t− 1)) = P (xF (t)).

To make things even clearer, let us explicitly substitute xF with a RV L
denoting locations in the scene, and D with RV F denoting features (whatever
they may be); then Eq. 14 boils down to the the following

posterior prob. of selecting location L︷ ︸︸ ︷
P (L | F) =

feature likelihood under location L︷ ︸︸ ︷
P (F | L)
P (F)

prior prob. of location L︷ ︸︸ ︷
P (L)

(15)
The feature-based Probabilistic Graphical Model underlying this

query (see Table 5 for a brief PGM overview) is a very simple one and is
represented on the left of Figure 11. As it can be seen, it is a subgraph of
the object-based model PGM (Figure 11, center), which is the one previously
discussed in Table 5 (compare to Figure 10).

Surprisingly enough, this simple model is sufficiently powerful to account
for a large number of visual attention models that have been proposed in
computational vision. This can be easily appreciated by setting P (F | L) =
const., P (L) = const. so that Eq. 15 reduces to

Fig. 10 A directed PGM
capturing the probabilistic
relationships among ob-
jects (O), spatial locations
(L) and observable fea-
tures (F ). Figure modified
after Dorr et al [31] and
Martinez-Conde et al [69]
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The issue of devising a computational model of eye guidance as related
to visual attention - i.e. answering the question Where to Look Next? in a
formal way - can be set in a probabilistic Bayesian framework (see Table 3 for
a brief introduction). Tatler and Vincent [101] have re-phrased this question
in terms of Bayes’ rule:

posterior prob. of gaze shift︷ ︸︸ ︷
P (x | D) =

data likelihood under the shift︷ ︸︸ ︷
P (D | x)
P (D)

gaze shift prior︷ ︸︸ ︷
P (x) , (7)

where x = xF (t)−xF (t− 1) is the random vector representing the gaze shift
(in [101], saccades), and D generically stands for the input data. As Tatler
and Vincent put it, ”The beauty of this approach is that the data could come
from a variety of data sources such as simple feature cues, derivations such
as Itti’s definition of salience, object-or other high-level sources”.

In Eq. 7, the first term on the r.h.s. accounts for the likelihood of par-
ticular visual data (e.g., features, such as edges or colors) occurring at a
gaze shift target location normalized by P (D) the pdf of these visual data
occurring in the environment As we will see in brief, this first term bears a
close resemblance to approaches previously employed to evaluate the possible
involvement of visual features in eye guidance.

Most interesting, and related to issues raised in the introductory Section, is
the Bayesian prior P (x), i.e., the probability of shifting the gaze to a location
irrespective of the visual information at that location. Indeed, this term will
encapsulate any systematic tendencies in the manner in which we explore
scenes with our eyes. The striking result obtained by Tatler and Vincent [101]
is that if we learn P (x) from actual observer’s behavior, then we can sample
gaze shifts (cfr. Table 4), i.e.,

Fig. 7 An illustration of the use of the Bayes’ rule for inferring the bias of a coin on
the basis of coin tossing results. The prior probability P (θ) for the coin bias θ captures
the assumption that the coin is likely to be a fair one (the pdf is “peaked” on θ = 0.5).
However, 7 heads occur after 8 tosses. Such experimental result is captured by the shape of
the likelihood P (X | θ) strongly biased to the right. Bayes’ rule computes the posterior pdf
P (θ | X) by “updating” the initial prior through the “observed” likelihood (the evidence
term is not shown in the figure and it has been treated as a normalization factor to constrain
probabilities between 0 and 1)
.
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way can be conveniently set in a probabilistic Bayesian framework. Tatler and Vincent
[2009] have re-phrased this question in terms of the posterior probability density function
(pdf) P (r | W), which accounts for the plausibility of generating the gaze shift r = rF (t)�
rF (t� 1), after the perceptual evaluation W. Formally, via Bayes’ rule:

P (r | W) =
P (W | r)
P (W)

P (r). (2)

In Eq. 2, the first term on the r.h.s. accounts for the likelihood P (W | r) of r when
visual data (e.g., features, such as edges or colors) are observed under a gaze shift rF (t) !
rF (t+ 1), normalized by P (W), the evidence of the perceptual evaluation. As they put it,
“The beauty of this approach is that the data could come from a variety of data sources
such as simple feature cues, derivations such as Itti’s definition of salience, object-or other
high-level sources”. The second term is the pdf P (r) incorporating prior knowledge on gaze
shift execution.
The generative model behind Eq. 2 is shown in Fig. 3 shaped in the form of a Probabilistic

Graphical Model (PGM, see Murphy 2012 for an introduction). A PGM is a graph where
nodes (e.g., r and W) denote RVs and directed arcs (arrows) encode conditional dependen-
cies between RVs, e.g P (W | r). A node with no input arcs (for example r) is associated
with a prior probability, e.g., P (r). Technically, as a whole, the PGM specifies at a glance
a chosen factorization of the joint probability of all nodes. Thus, in Fig. 3 we can promptly
read that P (W, r) = P (W | r)P (r). The PGM in Fig. 4 represents the PGM in Fig. 3, but
unrolled in time. Note that now the arc rF (t) ! rF (t+ 1) makes explicit the dynamics of
the gaze shift occurring with probability P (rF (t+ 1) | rF (t)).

Fig. 3. The generative model in PGM form sup-
porting the Bayesian inference specified via Eq
2

Fig. 4. The dynamic PGM obtained by un-
rolling in time the PGM depicted in Fig. 3

The probabilistic model represented in Fig. 3 is generative in the sense that if all pdfs in-
volved were fully specified, the attentive process could be simulated (via ancestral sampling,
Murphy 2012) as:

(1) Sampling the gaze shift from the prior:

r
⇤ ⇠ P (r); (3)

(2) Sampling the observation of the world under the gaze shift:

W⇤ ⇠ P (W | r⇤). (4)

Inferring the gaze shift r when W is known boils down to the inverse probability problem
(inverting the arrows), which is solved via Bayes’ rule (Eq. 2). In the remainder of this
paper we will largely use PGMs to simplify the presentation and discussion of probabilistic
models.
We will see in brief (Section 3.2) that many current approaches previously mentioned can

be accounted for by the likelihood term alone. But, crucial, and related to issues raised in
Section 2.2, is the Bayesian prior P (r).
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W⇤ ⇠ P (W | r⇤). (4)

Inferring the gaze shift r when W is known boils down to the inverse probability problem
(inverting the arrows), which is solved via Bayes’ rule (Eq. 2). In the remainder of this
paper we will largely use PGMs to simplify the presentation and discussion of probabilistic
models.
We will see in brief (Section 3.2) that many current approaches previously mentioned can

be accounted for by the likelihood term alone. But, crucial, and related to issues raised in
Section 2.2, is the Bayesian prior P (r).
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gree of stochasticity was controlled via the “temperature” parameter of the Metropolis
algorithm. The underlying eye guidance model was that of a random walker exploring the
potential landscape (salience) according to a Langevin-like stochastic di↵erential equation
(SDE). The merit of such equation is the joint treatment of both the deterministic and the
stochastic (variability) components behind eye guidance1.
This basic mechanism has been refined and generalized in [Boccignone and Ferraro 2013]

to composite ↵-stable or Lévy random walks (the Cauchy law is but one instance of the class
of ↵-stable distributions), where, inspired by animal foraging behaviour, a twofold regime
can be distinguished: local exploitation (fixational movements following Brownian motion)
and large exploration/relocation (saccade following Lévy motion). What is interesting, with
respect to the early model [Boccignone and Ferraro 2004], is that the choice between the
“feed” or “fly” states is made by sampling from a Bernoulli distribution, Bern(z | ⇡), with
the parameter ⇡ sampled from the conjugate prior Beta(⇡ | ↵,�). In turn, the behaviour of
the Beta prior can be shaped via its hyperparameters (↵,�), which, in an Empirical Bayes
approximation, can be tuned as a function of the class of perceptual data at hand (in the
vein of Le Meur and Coutrot 2016) and of time spent in feeding (fixation duration). Most
important, this approach paves the way to the possibility of treating visual exploration
strategies in terms of foraging strategies [Wolfe 2013; Cain et al. 2012; Boccignone and
Ferraro 2014; Clavelli et al. 2014; Napoletano et al. 2015]. We will further expand on this
in Section 4.

3.2. The unbearable lightness of the likelihood

We noticed before, by inspecting Eq. 2 that the term P (W|r)
P (W) could be related to many models

proposed in the literature. This is an optimistic view. Most of the approaches actually
discard the dynamics of gaze shifts implicitly captured by the shift vector r(t). In practice,
they are more likely to be described by a simplified version of Eq. 2:

P (rF | W) =
P (W | rF )
P (W)

P (rF ). (5)

The di↵erence between Eq. 2 and 5 is subtle. The posterior P (rF | W) now answers the
query “What is the probability of fixating at location rF given visual data W?” Further,
the prior P (rF ) simply accounts for the probability of spotting location rF . As a matter of
fact, Eq. 5 bears no dynamics.
In probabilistic terms we may re-phrase this result as the outcome of an assumption of

independence: P (r) = P (rF (t) � rF (t � 1)) ' P (rF (t) | rF (t � 1)) = P (rF (t)). To make
things even clearer, let us explicitly substitute rF with a RV L denoting locations in the
scene, and W with RV F denoting features (whatever they may be); then, Eq. 5 boils down
to

P (L | F) = P (F | L)
P (F)

P (L). (6)

The PGM underlying this inferential step is a very simple one and is represented in Figure 5.
A straightforward but principled use of Eq. 6, which has been exploited by approaches that
draw upon techniques borrowed from statistical machine learning [Murphy 2012] is the
following: consider L as a binary RV taking values in [0, 1] (or [�1, 1]), so that P (L = 1 | F)
represents the probability for a pixel, a superpixel or a patch of being classified as salient.
In the case the prior P (L) is assumed to be uniform (no spatial bias, no preferred loca-

tions), then P (L = 1 | F) ' P (F | L = 1). The likelihood function P (F | L = 1) can be

1Matlab simulation is available for download at http://www.mathworks.com/matlabcentral/fileexchange/
38512-visual-scanpaths-via-constrained-levy-exploration-of-a-saliency-landscape
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to composite ↵-stable or Lévy random walks (the Cauchy law is but one instance of the class
of ↵-stable distributions), where, inspired by animal foraging behaviour, a twofold regime
can be distinguished: local exploitation (fixational movements following Brownian motion)
and large exploration/relocation (saccade following Lévy motion). What is interesting, with
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respect to the early model [Boccignone and Ferraro 2004], is that the choice between the
“feed” or “fly” states is made by sampling from a Bernoulli distribution, Bern(z | ⇡), with
the parameter ⇡ sampled from the conjugate prior Beta(⇡ | ↵,�). In turn, the behaviour of
the Beta prior can be shaped via its hyperparameters (↵,�), which, in an Empirical Bayes
approximation, can be tuned as a function of the class of perceptual data at hand (in the
vein of Le Meur and Coutrot 2016) and of time spent in feeding (fixation duration). Most
important, this approach paves the way to the possibility of treating visual exploration
strategies in terms of foraging strategies [Wolfe 2013; Cain et al. 2012; Boccignone and
Ferraro 2014; Clavelli et al. 2014; Napoletano et al. 2015]. We will further expand on this
in Section 4.

3.2. The unbearable lightness of the likelihood

We noticed before, by inspecting Eq. 2 that the term P (W|r)
P (W) could be related to many models

proposed in the literature. This is an optimistic view. Most of the approaches actually
discard the dynamics of gaze shifts implicitly captured by the shift vector r(t). In practice,
they are more likely to be described by a simplified version of Eq. 2:

P (rF | W) =
P (W | rF )
P (W)

P (rF ). (5)

The di↵erence between Eq. 2 and 5 is subtle. The posterior P (rF | W) now answers the
query “What is the probability of fixating at location rF given visual data W?” Further,
the prior P (rF ) simply accounts for the probability of spotting location rF . As a matter of
fact, Eq. 5 bears no dynamics.
In probabilistic terms we may re-phrase this result as the outcome of an assumption of

independence: P (r) = P (rF (t) � rF (t � 1)) ' P (rF (t) | rF (t � 1)) = P (rF (t)). To make
things even clearer, let us explicitly substitute rF with a RV L denoting locations in the
scene, and W with RV F denoting features (whatever they may be); then, Eq. 5 boils down
to

P (L | F) = P (F | L)
P (F)

P (L). (6)

The PGM underlying this inferential step is a very simple one and is represented in Figure 5.
A straightforward but principled use of Eq. 6, which has been exploited by approaches that
draw upon techniques borrowed from statistical machine learning [Murphy 2012] is the
following: consider L as a binary RV taking values in [0, 1] (or [�1, 1]), so that P (L = 1 | F)
represents the probability for a pixel, a superpixel or a patch of being classified as salient.
In the case the prior P (L) is assumed to be uniform (no spatial bias, no preferred loca-

tions), then P (L = 1 | F) ' P (F | L = 1). The likelihood function P (F | L = 1) can be

1Matlab simulation is available for download at http://www.mathworks.com/matlabcentral/fileexchange/
38512-visual-scanpaths-via-constrained-levy-exploration-of-a-saliency-landscape

Publication date: June 2016.

A probabilistic tour of visual attention A:9

gree of stochasticity was controlled via the “temperature” parameter of the Metropolis
algorithm. The underlying eye guidance model was that of a random walker exploring the
potential landscape (salience) according to a Langevin-like stochastic di↵erential equation
(SDE). The merit of such equation is the joint treatment of both the deterministic and the
stochastic (variability) components behind eye guidance1.
This basic mechanism has been refined and generalized in [Boccignone and Ferraro 2013]
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the shift vector x(t). In practice, most models are more likely to be described
by a simplified version of Eq. 7:

posterior prob. of gazing at︷ ︸︸ ︷
P (xF | D) =

data likelihood under gaze at︷ ︸︸ ︷
P (D | xF )

P (D)

prior prob. of gazing at︷ ︸︸ ︷
P (xF ) , (14)

By careful inspection, it can be noted that the posterior P (xF | D) answers
the query “What is the probability of fixating location xF given visual data
D?”. Further, the prior P (xF ) accounts for the probability of fixating location
xF irrespective of the visual information at that location. The difference
between Eq. 7 and Eq. 14 is subtle. But, as a matter of fact, Eq. 14 bears no
dynamics. In probabilistic terms we may re-phrase this result as the outcome
of an assumption of independence:

P (x) = P (xF (t)− xF (t− 1)) " P (xF (t) | xF (t− 1)) = P (xF (t)).

To make things even clearer, let us explicitly substitute xF with a RV L
denoting locations in the scene, and D with RV F denoting features (whatever
they may be); then Eq. 14 boils down to the the following

posterior prob. of selecting location L︷ ︸︸ ︷
P (L | F) =

feature likelihood under location L︷ ︸︸ ︷
P (F | L)
P (F)

prior prob. of location L︷ ︸︸ ︷
P (L)

(15)
The feature-based Probabilistic Graphical Model underlying this

query (see Table 5 for a brief PGM overview) is a very simple one and is
represented on the left of Figure 11. As it can be seen, it is a subgraph of
the object-based model PGM (Figure 11, center), which is the one previously
discussed in Table 5 (compare to Figure 10).

Surprisingly enough, this simple model is sufficiently powerful to account
for a large number of visual attention models that have been proposed in
computational vision. This can be easily appreciated by setting P (F | L) =
const., P (L) = const. so that Eq. 15 reduces to

Fig. 10 A directed PGM
capturing the probabilistic
relationships among ob-
jects (O), spatial locations
(L) and observable fea-
tures (F ). Figure modified
after Dorr et al [31] and
Martinez-Conde et al [69]
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The issue of devising a computational model of eye guidance as related
to visual attention - i.e. answering the question Where to Look Next? in a
formal way - can be set in a probabilistic Bayesian framework (see Table 3 for
a brief introduction). Tatler and Vincent [101] have re-phrased this question
in terms of Bayes’ rule:

posterior prob. of gaze shift︷ ︸︸ ︷
P (x | D) =

data likelihood under the shift︷ ︸︸ ︷
P (D | x)
P (D)

gaze shift prior︷ ︸︸ ︷
P (x) , (7)

where x = xF (t)−xF (t− 1) is the random vector representing the gaze shift
(in [101], saccades), and D generically stands for the input data. As Tatler
and Vincent put it, ”The beauty of this approach is that the data could come
from a variety of data sources such as simple feature cues, derivations such
as Itti’s definition of salience, object-or other high-level sources”.

In Eq. 7, the first term on the r.h.s. accounts for the likelihood of par-
ticular visual data (e.g., features, such as edges or colors) occurring at a
gaze shift target location normalized by P (D) the pdf of these visual data
occurring in the environment As we will see in brief, this first term bears a
close resemblance to approaches previously employed to evaluate the possible
involvement of visual features in eye guidance.

Most interesting, and related to issues raised in the introductory Section, is
the Bayesian prior P (x), i.e., the probability of shifting the gaze to a location
irrespective of the visual information at that location. Indeed, this term will
encapsulate any systematic tendencies in the manner in which we explore
scenes with our eyes. The striking result obtained by Tatler and Vincent [101]
is that if we learn P (x) from actual observer’s behavior, then we can sample
gaze shifts (cfr. Table 4), i.e.,

Fig. 7 An illustration of the use of the Bayes’ rule for inferring the bias of a coin on
the basis of coin tossing results. The prior probability P (θ) for the coin bias θ captures
the assumption that the coin is likely to be a fair one (the pdf is “peaked” on θ = 0.5).
However, 7 heads occur after 8 tosses. Such experimental result is captured by the shape of
the likelihood P (X | θ) strongly biased to the right. Bayes’ rule computes the posterior pdf
P (θ | X) by “updating” the initial prior through the “observed” likelihood (the evidence
term is not shown in the figure and it has been treated as a normalization factor to constrain
probabilities between 0 and 1)
.
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way can be conveniently set in a probabilistic Bayesian framework. Tatler and Vincent
[2009] have re-phrased this question in terms of the posterior probability density function
(pdf) P (r | W), which accounts for the plausibility of generating the gaze shift r = rF (t)�
rF (t� 1), after the perceptual evaluation W. Formally, via Bayes’ rule:

P (r | W) =
P (W | r)
P (W)

P (r). (2)

In Eq. 2, the first term on the r.h.s. accounts for the likelihood P (W | r) of r when
visual data (e.g., features, such as edges or colors) are observed under a gaze shift rF (t) !
rF (t+ 1), normalized by P (W), the evidence of the perceptual evaluation. As they put it,
“The beauty of this approach is that the data could come from a variety of data sources
such as simple feature cues, derivations such as Itti’s definition of salience, object-or other
high-level sources”. The second term is the pdf P (r) incorporating prior knowledge on gaze
shift execution.
The generative model behind Eq. 2 is shown in Fig. 3 shaped in the form of a Probabilistic

Graphical Model (PGM, see Murphy 2012 for an introduction). A PGM is a graph where
nodes (e.g., r and W) denote RVs and directed arcs (arrows) encode conditional dependen-
cies between RVs, e.g P (W | r). A node with no input arcs (for example r) is associated
with a prior probability, e.g., P (r). Technically, as a whole, the PGM specifies at a glance
a chosen factorization of the joint probability of all nodes. Thus, in Fig. 3 we can promptly
read that P (W, r) = P (W | r)P (r). The PGM in Fig. 4 represents the PGM in Fig. 3, but
unrolled in time. Note that now the arc rF (t) ! rF (t+ 1) makes explicit the dynamics of
the gaze shift occurring with probability P (rF (t+ 1) | rF (t)).

Fig. 3. The generative model in PGM form sup-
porting the Bayesian inference specified via Eq
2

Fig. 4. The dynamic PGM obtained by un-
rolling in time the PGM depicted in Fig. 3

The probabilistic model represented in Fig. 3 is generative in the sense that if all pdfs in-
volved were fully specified, the attentive process could be simulated (via ancestral sampling,
Murphy 2012) as:

(1) Sampling the gaze shift from the prior:

r
⇤ ⇠ P (r); (3)

(2) Sampling the observation of the world under the gaze shift:

W⇤ ⇠ P (W | r⇤). (4)

Inferring the gaze shift r when W is known boils down to the inverse probability problem
(inverting the arrows), which is solved via Bayes’ rule (Eq. 2). In the remainder of this
paper we will largely use PGMs to simplify the presentation and discussion of probabilistic
models.
We will see in brief (Section 3.2) that many current approaches previously mentioned can

be accounted for by the likelihood term alone. But, crucial, and related to issues raised in
Section 2.2, is the Bayesian prior P (r).
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way can be conveniently set in a probabilistic Bayesian framework. Tatler and Vincent
[2009] have re-phrased this question in terms of the posterior probability density function
(pdf) P (r | W), which accounts for the plausibility of generating the gaze shift r = rF (t)�
rF (t� 1), after the perceptual evaluation W. Formally, via Bayes’ rule:

P (r | W) =
P (W | r)
P (W)

P (r). (2)

In Eq. 2, the first term on the r.h.s. accounts for the likelihood P (W | r) of r when
visual data (e.g., features, such as edges or colors) are observed under a gaze shift rF (t) !
rF (t+ 1), normalized by P (W), the evidence of the perceptual evaluation. As they put it,
“The beauty of this approach is that the data could come from a variety of data sources
such as simple feature cues, derivations such as Itti’s definition of salience, object-or other
high-level sources”. The second term is the pdf P (r) incorporating prior knowledge on gaze
shift execution.
The generative model behind Eq. 2 is shown in Fig. 3 shaped in the form of a Probabilistic

Graphical Model (PGM, see Murphy 2012 for an introduction). A PGM is a graph where
nodes (e.g., r and W) denote RVs and directed arcs (arrows) encode conditional dependen-
cies between RVs, e.g P (W | r). A node with no input arcs (for example r) is associated
with a prior probability, e.g., P (r). Technically, as a whole, the PGM specifies at a glance
a chosen factorization of the joint probability of all nodes. Thus, in Fig. 3 we can promptly
read that P (W, r) = P (W | r)P (r). The PGM in Fig. 4 represents the PGM in Fig. 3, but
unrolled in time. Note that now the arc rF (t) ! rF (t+ 1) makes explicit the dynamics of
the gaze shift occurring with probability P (rF (t+ 1) | rF (t)).

Fig. 3. The generative model in PGM form sup-
porting the Bayesian inference specified via Eq
2

Fig. 4. The dynamic PGM obtained by un-
rolling in time the PGM depicted in Fig. 3

The probabilistic model represented in Fig. 3 is generative in the sense that if all pdfs in-
volved were fully specified, the attentive process could be simulated (via ancestral sampling,
Murphy 2012) as:

(1) Sampling the gaze shift from the prior:

r
⇤ ⇠ P (r); (3)

(2) Sampling the observation of the world under the gaze shift:

W⇤ ⇠ P (W | r⇤). (4)

Inferring the gaze shift r when W is known boils down to the inverse probability problem
(inverting the arrows), which is solved via Bayes’ rule (Eq. 2). In the remainder of this
paper we will largely use PGMs to simplify the presentation and discussion of probabilistic
models.
We will see in brief (Section 3.2) that many current approaches previously mentioned can

be accounted for by the likelihood term alone. But, crucial, and related to issues raised in
Section 2.2, is the Bayesian prior P (r).
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gree of stochasticity was controlled via the “temperature” parameter of the Metropolis
algorithm. The underlying eye guidance model was that of a random walker exploring the
potential landscape (salience) according to a Langevin-like stochastic di↵erential equation
(SDE). The merit of such equation is the joint treatment of both the deterministic and the
stochastic (variability) components behind eye guidance1.
This basic mechanism has been refined and generalized in [Boccignone and Ferraro 2013]

to composite ↵-stable or Lévy random walks (the Cauchy law is but one instance of the class
of ↵-stable distributions), where, inspired by animal foraging behaviour, a twofold regime
can be distinguished: local exploitation (fixational movements following Brownian motion)
and large exploration/relocation (saccade following Lévy motion). What is interesting, with
respect to the early model [Boccignone and Ferraro 2004], is that the choice between the
“feed” or “fly” states is made by sampling from a Bernoulli distribution, Bern(z | ⇡), with
the parameter ⇡ sampled from the conjugate prior Beta(⇡ | ↵,�). In turn, the behaviour of
the Beta prior can be shaped via its hyperparameters (↵,�), which, in an Empirical Bayes
approximation, can be tuned as a function of the class of perceptual data at hand (in the
vein of Le Meur and Coutrot 2016) and of time spent in feeding (fixation duration). Most
important, this approach paves the way to the possibility of treating visual exploration
strategies in terms of foraging strategies [Wolfe 2013; Cain et al. 2012; Boccignone and
Ferraro 2014; Clavelli et al. 2014; Napoletano et al. 2015]. We will further expand on this
in Section 4.

3.2. The unbearable lightness of the likelihood

We noticed before, by inspecting Eq. 2 that the term P (W|r)
P (W) could be related to many models

proposed in the literature. This is an optimistic view. Most of the approaches actually
discard the dynamics of gaze shifts implicitly captured by the shift vector r(t). In practice,
they are more likely to be described by a simplified version of Eq. 2:

P (rF | W) =
P (W | rF )
P (W)

P (rF ). (5)

The di↵erence between Eq. 2 and 5 is subtle. The posterior P (rF | W) now answers the
query “What is the probability of fixating at location rF given visual data W?” Further,
the prior P (rF ) simply accounts for the probability of spotting location rF . As a matter of
fact, Eq. 5 bears no dynamics.
In probabilistic terms we may re-phrase this result as the outcome of an assumption of

independence: P (r) = P (rF (t) � rF (t � 1)) ' P (rF (t) | rF (t � 1)) = P (rF (t)). To make
things even clearer, let us explicitly substitute rF with a RV L denoting locations in the
scene, and W with RV F denoting features (whatever they may be); then, Eq. 5 boils down
to

P (L | F) = P (F | L)
P (F)

P (L). (6)

The PGM underlying this inferential step is a very simple one and is represented in Figure 5.
A straightforward but principled use of Eq. 6, which has been exploited by approaches that
draw upon techniques borrowed from statistical machine learning [Murphy 2012] is the
following: consider L as a binary RV taking values in [0, 1] (or [�1, 1]), so that P (L = 1 | F)
represents the probability for a pixel, a superpixel or a patch of being classified as salient.
In the case the prior P (L) is assumed to be uniform (no spatial bias, no preferred loca-

tions), then P (L = 1 | F) ' P (F | L = 1). The likelihood function P (F | L = 1) can be

1Matlab simulation is available for download at http://www.mathworks.com/matlabcentral/fileexchange/
38512-visual-scanpaths-via-constrained-levy-exploration-of-a-saliency-landscape
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Fig. 11 PGMs of increasing level of representational complexity (left to right) that can
account for most models proposed in the computational vision field. Left: feature-based.
Center: object-based. Right: the Bayesian model by Chikkerur et al. [23], which maps
the PGM structure to brain areas underpinning visual attention: early visual areas V1 and
V2, V4, lateral intraparietal (LIP), frontal eye fields (FEF), inferotemporal (IT), prefrontal
cortex (PFC).

posterior prob. of selecting location L︷ ︸︸ ︷
P (L | F) ∝

salience at location L︷ ︸︸ ︷
1

P (F)
. (16)

Eq. 16 tells that the probability of fixating a spatial location L = (x, y) is
higher when “unlikely” features ( 1

P (F) ) occur at that location. In a natu-

ral scene, it is typically the case of high contrast regions (with respect to
either luminance, color, texture or motion) and clearly relates to entropy
and information theory concepts [9]. This is nothing but the most prominent
salience-based model in the literature proposed by Itti et al [55], which Eq. 16
re-phrases in probabilistic terms.

A thorough reading of the recent review by Borji and Itti [12] is sufficient
to gain the understanding that a great deal computational models so far
proposed are much or less variations of this leitmotif (experimenting with
different features, different weights for combining them, etc.). The weakness
of such a pure bottom-up approach has been largely discussed (see, e.g. [99,
40, 32]). Indeed, the effect of early saliency on attention is likely to be a
correlational effect rather than an actual causal one [40, 93], though salience
may be still more predictive than chance while preparing for a memory test
as discussed by Foulsham and Underwood [40].

Thus, recent efforts have tried to go beyond this simple stage with the aim
of climbing the representational hierarchy shown in Figure 2. This entails
a first shift from Eq. 16 (based on a oversimplified representation) back to
Eq. 15. Torralba et al. [102] have shown that using prior knowledge on the
typical spatial location of the search target, as well as contextual informa-
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the shift vector x(t). In practice, most models are more likely to be described
by a simplified version of Eq. 7:

posterior prob. of gazing at︷ ︸︸ ︷
P (xF | D) =

data likelihood under gaze at︷ ︸︸ ︷
P (D | xF )

P (D)

prior prob. of gazing at︷ ︸︸ ︷
P (xF ) , (14)

By careful inspection, it can be noted that the posterior P (xF | D) answers
the query “What is the probability of fixating location xF given visual data
D?”. Further, the prior P (xF ) accounts for the probability of fixating location
xF irrespective of the visual information at that location. The difference
between Eq. 7 and Eq. 14 is subtle. But, as a matter of fact, Eq. 14 bears no
dynamics. In probabilistic terms we may re-phrase this result as the outcome
of an assumption of independence:

P (x) = P (xF (t)− xF (t− 1)) " P (xF (t) | xF (t− 1)) = P (xF (t)).

To make things even clearer, let us explicitly substitute xF with a RV L
denoting locations in the scene, and D with RV F denoting features (whatever
they may be); then Eq. 14 boils down to the the following

posterior prob. of selecting location L︷ ︸︸ ︷
P (L | F) =

feature likelihood under location L︷ ︸︸ ︷
P (F | L)
P (F)

prior prob. of location L︷ ︸︸ ︷
P (L)

(15)
The feature-based Probabilistic Graphical Model underlying this

query (see Table 5 for a brief PGM overview) is a very simple one and is
represented on the left of Figure 11. As it can be seen, it is a subgraph of
the object-based model PGM (Figure 11, center), which is the one previously
discussed in Table 5 (compare to Figure 10).

Surprisingly enough, this simple model is sufficiently powerful to account
for a large number of visual attention models that have been proposed in
computational vision. This can be easily appreciated by setting P (F | L) =
const., P (L) = const. so that Eq. 15 reduces to

Fig. 10 A directed PGM
capturing the probabilistic
relationships among ob-
jects (O), spatial locations
(L) and observable fea-
tures (F ). Figure modified
after Dorr et al [31] and
Martinez-Conde et al [69]
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unrolled in time. Note that now the arc rF (t) ! rF (t+ 1) makes explicit the dynamics of13
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︷ ︸︸ ︷

where x = xF (t)−xF (t− 1) is the random vector representing the gaze shift
(in [101], saccades), and D generically stands for the input data. As Tatler
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the query “What is the probability of fixating location xF given visual data
D?”. Further, the prior P (xF ) accounts for the probability of fixating location
xF irrespective of the visual information at that location. The difference
between Eq. 7 and Eq. 14 is subtle. But, as a matter of fact, Eq. 14 bears no
dynamics. In probabilistic terms we may re-phrase this result as the outcome
of an assumption of independence:

P (x) = P (xF (t)− xF (t− 1)) " P (xF (t) | xF (t− 1)) = P (xF (t)).

To make things even clearer, let us explicitly substitute xF with a RV L
denoting locations in the scene, and D with RV F denoting features (whatever
they may be); then Eq. 14 boils down to the the following

posterior prob. of selecting location L︷ ︸︸ ︷
P (L | F) =

feature likelihood under location L︷ ︸︸ ︷
P (F | L)
P (F)

prior prob. of location L︷ ︸︸ ︷
P (L)

(15)
The feature-based Probabilistic Graphical Model underlying this

query (see Table 5 for a brief PGM overview) is a very simple one and is
represented on the left of Figure 11. As it can be seen, it is a subgraph of
the object-based model PGM (Figure 11, center), which is the one previously
discussed in Table 5 (compare to Figure 10).

Surprisingly enough, this simple model is sufficiently powerful to account
for a large number of visual attention models that have been proposed in
computational vision. This can be easily appreciated by setting P (F | L) =
const., P (L) = const. so that Eq. 15 reduces to

Fig. 10 A directed PGM
capturing the probabilistic
relationships among ob-
jects (O), spatial locations
(L) and observable fea-
tures (F ). Figure modified
after Dorr et al [31] and
Martinez-Conde et al [69]
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Fig. 11 PGMs of increasing level of representational complexity (left to right) that can
account for most models proposed in the computational vision field. Left: feature-based.
Center: object-based. Right: the Bayesian model by Chikkerur et al. [23], which maps
the PGM structure to brain areas underpinning visual attention: early visual areas V1 and
V2, V4, lateral intraparietal (LIP), frontal eye fields (FEF), inferotemporal (IT), prefrontal
cortex (PFC).

posterior prob. of selecting location L︷ ︸︸ ︷
P (L | F) ∝

salience at location L︷ ︸︸ ︷
1

P (F)
. (16)

Eq. 16 tells that the probability of fixating a spatial location L = (x, y) is
higher when “unlikely” features ( 1

P (F) ) occur at that location. In a natu-

ral scene, it is typically the case of high contrast regions (with respect to
either luminance, color, texture or motion) and clearly relates to entropy
and information theory concepts [9]. This is nothing but the most prominent
salience-based model in the literature proposed by Itti et al [55], which Eq. 16
re-phrases in probabilistic terms.

A thorough reading of the recent review by Borji and Itti [12] is sufficient
to gain the understanding that a great deal computational models so far
proposed are much or less variations of this leitmotif (experimenting with
different features, different weights for combining them, etc.). The weakness
of such a pure bottom-up approach has been largely discussed (see, e.g. [99,
40, 32]). Indeed, the effect of early saliency on attention is likely to be a
correlational effect rather than an actual causal one [40, 93], though salience
may be still more predictive than chance while preparing for a memory test
as discussed by Foulsham and Underwood [40].

Thus, recent efforts have tried to go beyond this simple stage with the aim
of climbing the representational hierarchy shown in Figure 2. This entails
a first shift from Eq. 16 (based on a oversimplified representation) back to
Eq. 15. Torralba et al. [102] have shown that using prior knowledge on the
typical spatial location of the search target, as well as contextual informa-

Torralba Poggio et al.Torralba 
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To sum up…

1980). Koch and Ullman (1985) proposed that these
feature maps are combined into a salience map that is
followed by a winner-take-all network used to guide
visual attention. This basic conceptual framework was
later spelled out in more detail (Itti & Koch, 2000) and
tested numerous times using stimuli of different complex-
ity. Overall, the saliency map model is capable of
predicting fixation locations better than chance, but we
argue here that just exactly how well it performs depends
on many factors. In most cases, when passively viewing
static natural images, it performs just barely better than
chance (Betz, Kietzmann, Wilming, & König, 2010;
Tatler & Vincent, 2009).
In the most prominent implementation of a salience

model (Itti & Koch, 2000, 2001), the input image is first
linearly filtered at eight spatial scales and center–surround
differences are computed, both separately for three
features: intensity, color, and orientation. This resembles
transformations carried out by neurons in the early stages
of visual processing. After normalization, a conspicuity
map is created for each feature, which are finally merged
into a single saliency map. A winner-take-all network
detects the most salient point in the image.
One reason why the saliency map approach caught so

much attraction was its close relationship to our knowl-
edge of the early visual system. Nowadays, the idea of
parallel and independent pathways for the processing of

different visual attributes such as color, form, or motion is
no longer as dominant as it was in the 1980s. However,
this assumption is not crucial for the model. The main
assumption of the computation of local feature contrast
has found empirical support from V1 physiology
(reviewed in Carandini et al., 2005) and computational
support in models of V1 (Carandini & Heeger, 1994;
Carandini, Heeger, & Movshon, 1997). The putative
anatomical substrate of the saliency map—assumed to be
the LGN by Koch and Ullman (1985)—has been
attributed to a number of locations in the visual hierarchy.
Areas suggested include V1 (Li, 2002), V4 (Mazer &
Gallant, 2003), LIP (Kusunoki, Gottlieb, & Goldberg,
2000), and FEF (Thompson & Bichot, 2005). Maps in
some of these areas, typically higher up in the cortical
hierarchy, are often called priority maps, because they
integrate bottom-up visual salience and top-down signals
(Ipata, Gee, Bisley, & Goldberg, 2009). Most likely, each
one of the branches in the framework shown in Figure 1
has its own map, and possibly, all available information is
integrated into a common priority map. In such a frame-
work, the priority map would be closely linked with areas
that underlie the control of saccadic eye movements and,
therefore, most likely situated in frontal brain areas such
as the FEF (Schall & Thompson, 1999) or in parietal areas
such as the LIP (Goldberg, Bisley, Powell, & Gottlieb,
2006).

Figure 1. Framework for the control of saccadic eye movements. There are several interacting layers of control that influence saccadic
target selection. Figure modified after Fuster (2004).
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Introduction

Eye movement research has seen massive advances
during the last 50 years. By now, the major neural
pathways controlling different types of eye movements
are well established, and the technology for tracking gaze
position has advanced considerably and most importantly
has become widely available. Eye movement studies
gained widespread attention in disciplines ranging from
biology and medicine to computer science and economics.1

Nonetheless, the most pertinent questions that relate to
understanding gaze direction remain unchanged. Why do
we look where we do, when viewing scenes? How are eye
movements and perception related? These questions have
already been raised in the now classical work of Buswell
(1935) and Yarbus (1967). The fact that scientists are still
asking the same questions (e.g., Tatler, 2009) shows that
so far no satisfactory consensus has been reached in
answer to these questions. In our review, we will focus on
these two questions, and we hope to be able to deliver at
least partial answers.
Scientific research on eye movements began at the end

of the 19th century when reliable methods for the measure-
ment of eye position were first developed (Buswell, 1935;
Huey, 1898; Orschansky, 1899; for a detailed historical
overview, see Wade & Tatler, 2005; Yarbus, 1967). While
some of these devices had a remarkable measurement
precision, they were generally custom built and not widely

available. The development of the scleral search coil
technique by David Robinson (1963) was a hallmark
invention to measure eye position precisely and is still
used in nearly all explorations into the physiology of eye
movements. Search coils were later successfully adopted
for use with human observers (Collewijn, van der Mark, &
Jansen, 1975). At the same time, the development of the
dual Purkinje image eye tracker by SRI International
(Cornsweet & Crane, 1973; Crane, 1994) allowed non-
invasive, high-precision and low-noise measurements in
humans. These devices have been highly successful and
are still in use. Over the last 20 years, big improvements
were made in video-based eye tracking and its wide
availability has certainly led to a strong increase in the
number of investigations on eye movements.
In line with these technological advances, insights were

gained into the anatomical and physiological basis of the
primate eye movement system. On the one hand, record-
ings from single neurons in the monkey brain led to
precise measurements of the properties of neurons in most
areas related to eye movement control (Bruce & Goldberg,
1985; Mays & Sparks, 1980; Robinson, 1972; Robinson &
Fuchs, 1969; Wurtz & Goldberg, 1972). On the other
hand, eye movements were highly relevant to human
neurology (Leigh & Kennard, 2004; Leigh & Zee, 1999;
Munoz & Everling, 2004), and knowledge from these two
main sources provided us with a detailed picture of the
neural pathways controlling different types of eye move-
ments. For example, the whole circuit for pursuit eye
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1980). Koch and Ullman (1985) proposed that these
feature maps are combined into a salience map that is
followed by a winner-take-all network used to guide
visual attention. This basic conceptual framework was
later spelled out in more detail (Itti & Koch, 2000) and
tested numerous times using stimuli of different complex-
ity. Overall, the saliency map model is capable of
predicting fixation locations better than chance, but we
argue here that just exactly how well it performs depends
on many factors. In most cases, when passively viewing
static natural images, it performs just barely better than
chance (Betz, Kietzmann, Wilming, & König, 2010;
Tatler & Vincent, 2009).
In the most prominent implementation of a salience

model (Itti & Koch, 2000, 2001), the input image is first
linearly filtered at eight spatial scales and center–surround
differences are computed, both separately for three
features: intensity, color, and orientation. This resembles
transformations carried out by neurons in the early stages
of visual processing. After normalization, a conspicuity
map is created for each feature, which are finally merged
into a single saliency map. A winner-take-all network
detects the most salient point in the image.
One reason why the saliency map approach caught so

much attraction was its close relationship to our knowl-
edge of the early visual system. Nowadays, the idea of
parallel and independent pathways for the processing of

different visual attributes such as color, form, or motion is
no longer as dominant as it was in the 1980s. However,
this assumption is not crucial for the model. The main
assumption of the computation of local feature contrast
has found empirical support from V1 physiology
(reviewed in Carandini et al., 2005) and computational
support in models of V1 (Carandini & Heeger, 1994;
Carandini, Heeger, & Movshon, 1997). The putative
anatomical substrate of the saliency map—assumed to be
the LGN by Koch and Ullman (1985)—has been
attributed to a number of locations in the visual hierarchy.
Areas suggested include V1 (Li, 2002), V4 (Mazer &
Gallant, 2003), LIP (Kusunoki, Gottlieb, & Goldberg,
2000), and FEF (Thompson & Bichot, 2005). Maps in
some of these areas, typically higher up in the cortical
hierarchy, are often called priority maps, because they
integrate bottom-up visual salience and top-down signals
(Ipata, Gee, Bisley, & Goldberg, 2009). Most likely, each
one of the branches in the framework shown in Figure 1
has its own map, and possibly, all available information is
integrated into a common priority map. In such a frame-
work, the priority map would be closely linked with areas
that underlie the control of saccadic eye movements and,
therefore, most likely situated in frontal brain areas such
as the FEF (Schall & Thompson, 1999) or in parietal areas
such as the LIP (Goldberg, Bisley, Powell, & Gottlieb,
2006).

Figure 1. Framework for the control of saccadic eye movements. There are several interacting layers of control that influence saccadic
target selection. Figure modified after Fuster (2004).
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1. Where do people look?

2. How do people look there?

(e.g., saliency map)

deterministic  gaze shift,
no variability!
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The problem of variability 
// How random are gaze shifts?
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The problem of variability 
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• Oculomotor tendencies:
• regularities that are common across all instances of 

and manipulations to the behavior
• Tatler & Vincent:

• a model based on oculomotor biases alone 
performs better than the standard salience model

If one samples from 
prior only

blind to visual information, out-performs 
feature-based accounts of eye guidance: 

0. 648 area under the receiver operator 
curve (AUC) as opposed to 0. 593 for 
edge information and 0. 565 for salience 
information!
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The issue of devising a computational model of eye guidance as related
to visual attention - i.e. answering the question Where to Look Next? in a
formal way - can be set in a probabilistic Bayesian framework (see Table 3 for
a brief introduction). Tatler and Vincent [101] have re-phrased this question
in terms of Bayes’ rule:

posterior prob. of gaze shift︷ ︸︸ ︷
P (x | D) =

data likelihood under the shift︷ ︸︸ ︷
P (D | x)
P (D)

gaze shift prior︷ ︸︸ ︷
P (x) , (7)

where x = xF (t)−xF (t− 1) is the random vector representing the gaze shift
(in [101], saccades), and D generically stands for the input data. As Tatler
and Vincent put it, ”The beauty of this approach is that the data could come
from a variety of data sources such as simple feature cues, derivations such
as Itti’s definition of salience, object-or other high-level sources”.

In Eq. 7, the first term on the r.h.s. accounts for the likelihood of par-
ticular visual data (e.g., features, such as edges or colors) occurring at a
gaze shift target location normalized by P (D) the pdf of these visual data
occurring in the environment As we will see in brief, this first term bears a
close resemblance to approaches previously employed to evaluate the possible
involvement of visual features in eye guidance.

Most interesting, and related to issues raised in the introductory Section, is
the Bayesian prior P (x), i.e., the probability of shifting the gaze to a location
irrespective of the visual information at that location. Indeed, this term will
encapsulate any systematic tendencies in the manner in which we explore
scenes with our eyes. The striking result obtained by Tatler and Vincent [101]
is that if we learn P (x) from actual observer’s behavior, then we can sample
gaze shifts (cfr. Table 4), i.e.,

Fig. 7 An illustration of the use of the Bayes’ rule for inferring the bias of a coin on
the basis of coin tossing results. The prior probability P (θ) for the coin bias θ captures
the assumption that the coin is likely to be a fair one (the pdf is “peaked” on θ = 0.5).
However, 7 heads occur after 8 tosses. Such experimental result is captured by the shape of
the likelihood P (X | θ) strongly biased to the right. Bayes’ rule computes the posterior pdf
P (θ | X) by “updating” the initial prior through the “observed” likelihood (the evidence
term is not shown in the figure and it has been treated as a normalization factor to constrain
probabilities between 0 and 1)
.
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way can be conveniently set in a probabilistic Bayesian framework. Tatler and Vincent
[2009] have re-phrased this question in terms of the posterior probability density function
(pdf) P (r | W), which accounts for the plausibility of generating the gaze shift r = rF (t)�
rF (t� 1), after the perceptual evaluation W. Formally, via Bayes’ rule:

P (r | W) =
P (W | r)
P (W)

P (r). (2)

In Eq. 2, the first term on the r.h.s. accounts for the likelihood P (W | r) of r when
visual data (e.g., features, such as edges or colors) are observed under a gaze shift rF (t) !
rF (t+ 1), normalized by P (W), the evidence of the perceptual evaluation. As they put it,
“The beauty of this approach is that the data could come from a variety of data sources
such as simple feature cues, derivations such as Itti’s definition of salience, object-or other
high-level sources”. The second term is the pdf P (r) incorporating prior knowledge on gaze
shift execution.
The generative model behind Eq. 2 is shown in Fig. 3 shaped in the form of a Probabilistic

Graphical Model (PGM, see Murphy 2012 for an introduction). A PGM is a graph where
nodes (e.g., r and W) denote RVs and directed arcs (arrows) encode conditional dependen-
cies between RVs, e.g P (W | r). A node with no input arcs (for example r) is associated
with a prior probability, e.g., P (r). Technically, as a whole, the PGM specifies at a glance
a chosen factorization of the joint probability of all nodes. Thus, in Fig. 3 we can promptly
read that P (W, r) = P (W | r)P (r). The PGM in Fig. 4 represents the PGM in Fig. 3, but
unrolled in time. Note that now the arc rF (t) ! rF (t+ 1) makes explicit the dynamics of
the gaze shift occurring with probability P (rF (t+ 1) | rF (t)).

Fig. 3. The generative model in PGM form sup-
porting the Bayesian inference specified via Eq
2

Fig. 4. The dynamic PGM obtained by un-
rolling in time the PGM depicted in Fig. 3

The probabilistic model represented in Fig. 3 is generative in the sense that if all pdfs in-
volved were fully specified, the attentive process could be simulated (via ancestral sampling,
Murphy 2012) as:

(1) Sampling the gaze shift from the prior:

r
⇤ ⇠ P (r); (3)

(2) Sampling the observation of the world under the gaze shift:

W⇤ ⇠ P (W | r⇤). (4)

Inferring the gaze shift r when W is known boils down to the inverse probability problem
(inverting the arrows), which is solved via Bayes’ rule (Eq. 2). In the remainder of this
paper we will largely use PGMs to simplify the presentation and discussion of probabilistic
models.
We will see in brief (Section 3.2) that many current approaches previously mentioned can

be accounted for by the likelihood term alone. But, crucial, and related to issues raised in
Section 2.2, is the Bayesian prior P (r).
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nodes (e.g., r and W) denote RVs and directed arcs (arrows) encode conditional dependen-
cies between RVs, e.g P (W | r). A node with no input arcs (for example r) is associated
with a prior probability, e.g., P (r). Technically, as a whole, the PGM specifies at a glance
a chosen factorization of the joint probability of all nodes. Thus, in Fig. 3 we can promptly
read that P (W, r) = P (W | r)P (r). The PGM in Fig. 4 represents the PGM in Fig. 3, but
unrolled in time. Note that now the arc rF (t) ! rF (t+ 1) makes explicit the dynamics of
the gaze shift occurring with probability P (rF (t+ 1) | rF (t)).

Fig. 3. The generative model in PGM form sup-
porting the Bayesian inference specified via Eq
2

Fig. 4. The dynamic PGM obtained by un-
rolling in time the PGM depicted in Fig. 3

The probabilistic model represented in Fig. 3 is generative in the sense that if all pdfs in-
volved were fully specified, the attentive process could be simulated (via ancestral sampling,
Murphy 2012) as:
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⇤ ⇠ P (r); (3)

(2) Sampling the observation of the world under the gaze shift:

W⇤ ⇠ P (W | r⇤). (4)

Inferring the gaze shift r when W is known boils down to the inverse probability problem
(inverting the arrows), which is solved via Bayes’ rule (Eq. 2). In the remainder of this
paper we will largely use PGMs to simplify the presentation and discussion of probabilistic
models.
We will see in brief (Section 3.2) that many current approaches previously mentioned can

be accounted for by the likelihood term alone. But, crucial, and related to issues raised in
Section 2.2, is the Bayesian prior P (r).
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Ecological Sampling of Gaze Shifts
Giuseppe Boccignone and Mario Ferraro

Abstract—Visual attention guides our gaze to relevant parts of
the viewed scene, yet the moment-to-moment relocation of gaze
can be different among observers even though the same locations
are taken into account. Surprisingly, the variability of eye
movements has been so far overlooked by the great majority of
computational models of visual attention. In this paper we present
the ecological sampling model, a stochastic model of eye guidance
explaining such variability. The gaze shift mechanism is conceived
as an active random sampling that the foraging eye carries out
upon the visual landscape, under the constraints set by the ob-
servable features and the global complexity of the landscape. By
drawing on results reported in the foraging literature, the actual
gaze relocation is eventually driven by a stochastic differential
equation whose noise source is sampled from a mixture of α-
stable distributions. This way, the sampling strategy proposed
here allows to mimic a fundamental property of the eye guidance
mechanism: where we choose to look next at any given moment in
time, it is not completely deterministic, but neither is it completely
random To show that the model yields gaze shift motor behaviors
that exhibit statistics similar to those displayed by human
observers, we compare simulation outputs with those obtained
from eye-tracked subjects while viewing complex dynamic scenes.

Index Terms—Eye movements, foraging, Lévy flight, salience,
α-stable processes, visual attention.

I. Introduction

IN this paper we shall consider the problem of the variability
of visual scanpaths (the sequence of gaze shifts) produced

by human observers. When looking at natural movies under
a free-viewing or a general-purpose task, the relocation of
gaze can be different among observers even though the same
locations are taken into account. In practice, there is a small
probability that two observers will fixate exactly the same
location at exactly the same time. Such variations in individual
scanpaths (as regards chosen fixations, spatial scanning order,
and fixation duration) still hold when the scene contains
semantically rich objects. Variability is even exhibited by the
same subject along different trials on equal stimuli. Further, the
consistency in fixation locations between observers decreases
with prolonged viewing [1]. This effect is remarkable when
free-viewing static images: consistency in fixation locations
selected by observers decreases over the course of the first few
fixations after stimulus onset [2] and can become idiosyncratic.

Manuscript received November 12, 2012; revised December 10, 2012 and
February 27, 2013; accepted March 14, 2013. Date of publication April
16, 2013; date of current version January 13, 2014. This paper was partly
supported by the PASCAL2 Network of Excellence under EC grant no.
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Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.
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Challenges: Although the ability to predict where a human
might fixate elements of a viewed scene has long been of
interest in the computational vision community [3], [4], the
problem in question has hitherto been overlooked. Indeed,
a computational model of visual attention and eye guidance
should predict where the eyes will select the target of the
next fixation by providing: 1) a mapping viewed scene !→
gaze sequence, and 2) a procedure that implements such
mapping. One paradigmatic example is the most prominent
model in the literature proposed by Itti et al. [5]. In this model,
attention deployment is explained in terms of visual salience
as the output of a competitive process between a set of basic
contrast features. Eye guidance is conceived as a winner-take-
all (WTA) selection of most salient locations.

Nevertheless, most approaches focus on computing a map-
ping from an image, or, less frequently, from an image se-
quence to a representation suitable to ground the eye guidance
process (e.g., the recent review by Borji and Itti [4]). Such
representation is typically shaped in the form of a saliency
map, which is derived either bottom-up, as in [5], or top-down
modulated by cognitive and contextual factors (e.g., [6], [7]).
The saliency map is then evaluated in terms of its capacity for
predicting the image regions that will be explored by covert
and overt attentional shifts according to some evaluation mea-
sure [4]. The problem of eye guidance is somehow neglected
or, if needed for practical purposes [8], it is solved by adopting
some deterministic choice procedure. The latter is usually
based on the arg max operation [9]. The aforementioned WTA
scheme [5], [9], or the selection of the proto-object with the
highest attentional weight [10] are two examples. Even when
probabilistic frameworks are used to infer where to look next,
the final decision is often taken via the maximum a posteriori
(MAP) criterion, which again is an arg max operation (e.g.,
[11]–[15]), or variants such as the robust mean (arithmetic
mean with maximum value) over candidate positions [16].

Thus, as a matter of fact, the majority of models that have
been proposed so far (with few notable exceptions discussed
afterward), hardly take into account one fundamental feature
characterizing human oculomotor behavior: where we choose
to look next at any given moment in time is not completely
deterministic, but neither is it completely random [17]. Indeed,
even though the partial mapping viewed scene !→ salience
is taken for granted (which could be questioned under some
circumstances, [2]), current accounts of the subsequent step,
i.e., salience !→ gaze sequence, are still some way from
explaining the complexities of eye guidance behavior. In this
paper, we attempt to fill this gap.

Our approach: We assume that the gaze sequence is gener-
ated by an underlying stochastic process, accounting for sev-

2168-2267 c© 2013 IEEE
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Just as exploitation can be optimized to yield maximal
rewards, so can exploration be optimized to yield maximal
information about the environment. Exploration, thus
optimized, is known as ‘active learning’ [10–12]. In gen-
eral, a huge variety of actions can be used for active
learning, from turning your head towards a sound source

to opening your browser to check on the meaning of an
unknown phrase (such as ‘epistemic disclosure’ [13]).
Indeed, the way participants choose queries in categori-
zation tasks [14!,15], locate a region of interest in a variant
of the game of battleship [16], or choose questions in a
20-questions-like situation [17] has been shown to be
optimized for learning about task-relevant information.
Active sensing, more specifically, can be regarded as the
realm of active learning which involves actions that direct
your sensors to gain information about quantities that
change on relatively fast timescales, roughly correspond-
ing to the timescale of single trials in laboratory-based
tasks (see Box 2).

Common approximations in active sensing
strategies
Task-related active sensing, our main focus here, makes
the further approximation of breaking up ‘life’ into dis-
crete, known tasks. In contrast, curiosity-driven forms of
information seeking [13,18,19] may be understood as
optimized for improving an internal model for whatever
task may come our way. While laboratory tasks for study-
ing task-related active sensing are usually designed to
minimize the trade off between exploration and exploi-
tation, such that rewards only depend on task-relevant
information [3,20!!], curiosity-driven information seeking
is often demonstrated in tasks that do have an informa-
tion-independent reward structure, such that participants
can be shown to actively forego these rewards for addi-
tional information [21].

Even exploration or exploitation by themselves are still
intractable due to the exponential explosion of future
possibilities that need to be considered. For example,
maximal exploitation in the game of chess would require
considering a very large number of future sequences of
movement to maximize task success. Therefore, several
simpler heuristics have been proposed to describe behav-
ior. The simplest heuristic considers only the conse-
quence of the next action, and hence is termed greedy
or myopic. Thus, in the context of exploration, ideal
planners are typically formalized in a way that they seek
the single action that will maximize information gain or an
equivalent objective (see Box 2), without considering the
possibility that an action leading to suboptimal immedi-
ate information gain may allow other actions later with
which total information gain would eventually become
larger [3,22,20!!]. Interestingly, the strategy of greedily
seeking task-relevant information has been successful in
describing both human eye movements [22,20!!] and the
foraging trajectories of moths [23] and worms [24!].
However, for some tasks it has been shown that several
future actions [25!!,26] are considered when planning and
that there can be a trade-off between the depth of
planning and the number of plans considered when there
are time constraints on planning [27].

102 Computational modelling

Box 1 Exploration, exploitation, and the value of information

The ideal observer performs inference, using Bayes’ rule, about
several variables characterizing the state of the environment
simultaneously, x (e.g. what objects are present in the scene, their
configuration, features, etc.), given the sensory inputs up to the
current moment, z0:t, and an internal model of the environment and
its sensory apparatus, M:

Pðxjz0:t ; MÞ / Pðz0:t jx; MÞPðxjMÞ (1)

A task defines a reward function over actions, a, that depends on the
true state of the environment, Rða; xÞ. There are two aspects of the
reward function that make it task-dependent. First, it typically
depends only on a subset of state variables, xT (e.g. defining whether
it is the time of day, or the age of the people in the picture of Figure 1
that you want to estimate), and second, it has a particular functional
form (e.g. determining how much under-estimating or overestimating
the time of day matters).

In general, an agent navigating the environment cannot use the
reward function directly to select actions for two reasons. First, it
does not directly observe the true state of the environment, so it
must base its decisions on its beliefs about it as given by the ideal
observer (Eqn 1). Second, its objective is to maximize total reward in
the long run, and so the consequences of its actions in terms of how
they change environmental states (or, more precisely, the agent’s
beliefs about them) must also be taken into account. Thus, we can
write the value of an action, Q, as the sum of its immediate and future
values, each depending on the agent’s current beliefs:

Qða; Pðxjz0:t ; MÞÞ

¼ Qnowða; Pðxjz0:t ; MÞÞ þ Qfutureða; Pðxjz0:t ; MÞÞ (2)

This equation is the well-known Bellman optimality equation [76] but,
rather than expressing values directly for the states of the environment
x, as typically done, here it is applied to the belief ‘states’ of the agent,
Pðxjz0:t; MÞ, that is, the beliefs it holds about those states [77].

The immediate value Qnowða; Pðxjz0:t; MÞÞ can be computed as the
reward expected under the current posterior distribution provided by
the ideal observer (‘expected’ gain in Bayesian decision theory [78]):

Qnowða; Pðxjz0:t ; MÞÞ ¼
X

x

Rða; xÞPðxjz0:t ; MÞ (3)

The future value Qfutureða; Pðxjz0:t; MÞÞ has a more complicated form
that is generally computationally intractable, but can be shown to
depend on two factors: first, the way the action leads to future
rewards by steering the agent into future environmental states, and
second, the way it leads to new observations based on which the ideal
observer can update its beliefs so that its uncertainty decreases,
allowing better informed decisions and therefore higher rewards in the
future. These two factors are commonly referred to as ‘exploitation’
and ‘exploration’, respectively, and are often treated separately due
to the intractability of Qfuture a; P xjz0:t ; Mð Þð Þ, but as we see from Eqn 2
they both factor into the same greater objective of maximizing value
(i.e. ‘exploitation’) in terms of belief states. Importantly, evaluating
both factors requires recursion into the future so they are each
intractable even when treated separately.
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A key component of interacting with the world is how to direct

ones’ sensors so as to extract task-relevant information — a

process referred to as active sensing. In this review, we present

a framework for active sensing that forms a closed loop

between an ideal observer, that extracts task-relevant

information from a sequence of observations, and an ideal

planner which specifies the actions that lead to the most

informative observations. We discuss active sensing as an

approximation to exploration in the wider framework of

reinforcement learning, and conversely, discuss several

sensory, perceptual, and motor processes as approximations

to active sensing. Based on this framework, we introduce a

taxonomy of sensing strategies, identify hallmarks of active

sensing, and discuss recent advances in formalizing and

quantifying active sensing.
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Introduction
Skilled performance requires the efficient gathering and
processing of sensory information relevant to the given
task. The quality of sensory information depends on our
actions, because what we see, hear and touch is influenced
by our movements. For example, the motor system con-
trols the eyes’ sensory stream by orienting the fovea to
points of interest within the visual scene. Movements can
therefore be used to efficiently gather information, a
process termed active sensing. Active sensing involves
two main processes: perception, by which we process
sensory information and make inferences about the world,
and action, by which we choose how to sample the world
to obtain useful sensory information.

To illustrate the computational components of active
sensing, we consider the task of trying to determine
the time of day from a visual scene (Figure 1). Because
of the limited resolution of vision away from the fovea,
sensory information at any point in time is determined by
the fixation location (Figure 1, red dot, sensory input).
The perceptual process can be formalized in terms of an
ideal observer model [1,2] which makes task-relevant
inferences. To do so, the observer uses the sensory input
together with a knowledge of the properties of the task
(Figure 1, task) and the world, as well as features of our
sensors, such as the acuity falloff in peripheral vision [3,4]
and processing limitations, such as limited visual memory
[5,6!]. Such observers are typically formulated within the
Bayesian framework. For example, the observer could use
luminance information to estimate the time of the day, in
this case formalized as a posterior probability distribution
(Figure 1, observer).

The process of selecting an action can be formalized as an
ideal planner which uses both the observer’s inferences
and knowledge of the task to determine the next move-
ment, in this case where to orient the eyes (Figure 1,
planner). Ultimately, the objective for the ideal planner is
to improve task performance, but often it can be formal-
ized as reducing uncertainty in task-relevant variables,
such as the entropy of the distribution over the time of day.
The plan is then executed, resulting in an action that leads
to new sensory input (Figure 1, action). This closes the
loop of perception and action that defines active sensing
(Figure 1, red arrow path). Although we describe these
processes in discrete steps with a static stimulus and fixed
task, in general, active sensing can be considered in real
time with the stimulus and task changing continuously.

Active sensing as a form of exploration
As observer models have been extensively studied and
reviewed [1,2], we primarily focus here on the ideal planner
which is the other key process in active sensing. In general,
truly optimal planning is computationally intractable and
we, therefore, need to consider approximations and heur-
istics. In fact, active sensing itself can be seen as emerging
from such an approximation (see Box 1). The ultimate
objective of behavior can be formalized as maximizing the
total rewards that can be obtained in the long term [7].
This, in principle, requires considering the consequences
of future actions, not only in terms of the rewards to which
they lead, but also in terms of how they contribute to
additional knowledge about the environment, which can
be beneficial when planning actions in the more distant
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Introduction
Skilled performance requires the efficient gathering and
processing of sensory information relevant to the given
task. The quality of sensory information depends on our
actions, because what we see, hear and touch is influenced
by our movements. For example, the motor system con-
trols the eyes’ sensory stream by orienting the fovea to
points of interest within the visual scene. Movements can
therefore be used to efficiently gather information, a
process termed active sensing. Active sensing involves
two main processes: perception, by which we process
sensory information and make inferences about the world,
and action, by which we choose how to sample the world
to obtain useful sensory information.

To illustrate the computational components of active
sensing, we consider the task of trying to determine
the time of day from a visual scene (Figure 1). Because
of the limited resolution of vision away from the fovea,
sensory information at any point in time is determined by
the fixation location (Figure 1, red dot, sensory input).
The perceptual process can be formalized in terms of an
ideal observer model [1,2] which makes task-relevant
inferences. To do so, the observer uses the sensory input
together with a knowledge of the properties of the task
(Figure 1, task) and the world, as well as features of our
sensors, such as the acuity falloff in peripheral vision [3,4]
and processing limitations, such as limited visual memory
[5,6!]. Such observers are typically formulated within the
Bayesian framework. For example, the observer could use
luminance information to estimate the time of the day, in
this case formalized as a posterior probability distribution
(Figure 1, observer).

The process of selecting an action can be formalized as an
ideal planner which uses both the observer’s inferences
and knowledge of the task to determine the next move-
ment, in this case where to orient the eyes (Figure 1,
planner). Ultimately, the objective for the ideal planner is
to improve task performance, but often it can be formal-
ized as reducing uncertainty in task-relevant variables,
such as the entropy of the distribution over the time of day.
The plan is then executed, resulting in an action that leads
to new sensory input (Figure 1, action). This closes the
loop of perception and action that defines active sensing
(Figure 1, red arrow path). Although we describe these
processes in discrete steps with a static stimulus and fixed
task, in general, active sensing can be considered in real
time with the stimulus and task changing continuously.

Active sensing as a form of exploration
As observer models have been extensively studied and
reviewed [1,2], we primarily focus here on the ideal planner
which is the other key process in active sensing. In general,
truly optimal planning is computationally intractable and
we, therefore, need to consider approximations and heur-
istics. In fact, active sensing itself can be seen as emerging
from such an approximation (see Box 1). The ultimate
objective of behavior can be formalized as maximizing the
total rewards that can be obtained in the long term [7].
This, in principle, requires considering the consequences
of future actions, not only in terms of the rewards to which
they lead, but also in terms of how they contribute to
additional knowledge about the environment, which can
be beneficial when planning actions in the more distant
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all IPs characterising the pre-attentively perceived proto-object
can be obtained as O(t) = ⋃Np

p=1{r
(k)
i,p(t)}Ni,p

i=1 .

V. STREAM SELECTION

Streams vary in the number of objects they contain and
maybe other characteristics such as the ease with which
individual items are found. We assume that in the pre-attentive
stage, the choice of the observer to spot a stream, is drawn on
the basis of some global index of interest characterizing each
stream in the visual landscape. In ecological modelling for
instance, one such index is the landscape entropy determined
by dispersion/concentration of preys [1].

Here, generalizing these assumptions, we introduce the
time-varying configurational complexity C(k)(t) of the
k-th stream. Intuitively, by considering each stream a dynamic
system, we resort to the general principle that complex systems
are neither completely random neither perfectly ordered and
complexity should reach its maximum at a level of randomness
away from these extremes [51]. For instance, a crowded scene
with many pedestrians moving represents a disordered system
(high entropy, low order) as opposed to a scene where no
activities take place (low entropy, high order). The highest
complexity is thus reached when specific activities occur:
e.g., a group of people meeting. To formalize the relationship
between stream complexity and stream selection we proceed
as follows. Given C(k)(t), k = 1, · · · , K , the choice of the
k-th stream is obtained by sampling from the categorical
distribution

k ∼
K∏

k=1

[
P(C(k)(t))

]k
, (8)

with

P(C(k)(t)) = C(k)(t))
∑K

k=1 C(k)(t))
. (9)

Keeping to [51], complexity C(k)(t) is defined in terms of
order/disorder of the system,

C(k)(t) = !(k)(t) · "(k)(t), (10)

where !(k) ≡ H (k)/H (k)
sup is the disorder parameter, "(k) =

1−!(k) is the order parameter, and H (k) the Boltzmann-Gibbs-
Shannon (BGS) entropy with H (k)

sup its supremum. H (k) and
H (k)

sup are calculated as follows.
For each stream k, we compute the BGS entropy H as a

function of the spatial configuration of the sampled IPs. The
spatial domain D is partitioned into a configuration space of
cells (rectangular windows), i.e., {w(rc)}Nw

c=1, each cell being
centered at rc. By assigning each IP to the corresponding
window, the probability for point rs to be within cell c at
time t can be estimated as P(k)(c, t) $ 1

Ns

∑Ns
s=1 χs,c, where

χs,c = 1 if rs ∈ w(rc) and 0 otherwise.
Thus, H (k)(t) = −kB

∑Nw
c=1 P(k)(c, t) log P(k)(c, t),

and (10) can be easily computed. Since dealing with a fic-
titious thermodynamical system, we set Boltzmann’s constant
kB = 1. The supremum of H (k)(t) is Hsup = log Nw and it
is associated to a completely unconstrained process, that is a

process where H (k)(t) = const , since with reflecting boundary
conditions the asymptotic distribution is uniform.

When stream k is chosen at time t −1, attention is deployed
to the stream via the gaze shift rF (t − 1) → rF (t), and the
“entering time” tin = t is set.

VI. ATTENTIVE STREAM HANDLING

When gaze is deployed to the k-th stream, the rF (tin)
is positioned at the centre of the frame, and foveation is
simulated by blurring I(k)(tin) through an isotropic Gaussian
function centered at rF (tin), whose variance is taken as the
radius of a FoA, σ = |FO A|. This is approximately given
by 1/8 min[width, height], where width × height = |D|,
|D| being the dimension of the frame support D. This way
we obtain the foveated image, which provides the input for
the next processing steps. The foveation process is updated
for every gaze shift within the patch that involves a large
relocation (saccade), but not during small relocations, i.e. fixa-
tional or pursuit eye movements. At this stage, differently from
pre-attentive analysis, the observer exploits the full priority
posterior as formulated in Eq. 2, rather than the reduced form
specified in Eq. 3. In other terms, the object-based feature
likelihood, P(F(k)

|O |O), is taken into account.
Object search is performed by sampling, from current

location rF , a set of candidate gaze shifts rF (t) → r(k)
new(t +1)

(cfr. Fig.3, bottom-right picture). In simulation, candidate point
sampling is performed as in [39]. In a nutshell, r(k)

new(t +1) are
sampled via a Langevin-type stochastic differential equation,
where the drift component is a function of IPs’ configuration,
and the stochastic component is sampled from the Lévy
α-stable distribution. The latter accounts for prior oculomotor
biases on gaze shifts. We use different α-stable parameters
for the different types of gaze shifts - fixational, pursuit and
saccadic shifts -, that have been learned from eye-tracking
experiments of human subjects observing videos under the
same task considered here. The time-varying choice of the
family of parameters is conditioned on the current complexity
index C(k)(t) ([39] for details).

Denote R(k) the reward consequent on a gaze shift.
Then, next location is chosen to maximize the expected
reward:

rF (t + 1) = arg max
r(k)

new

E
[

R(k)

r(k)
new

]
. (11)

The expected reward is computed with reference to the value
of proto-objects available within the stream,

E
[

R(k)

r(k)
new

]
=

∑

p∈I(k)
V

V al(O(k)
p (t))P(O(k)

p (t)|r(k)
new(t + 1), T).

(12)

Here V al is the average value of proto-object Op(t)
with respect to the posterior P(L(k)(t)|I(k)(t)), which, by
using samples generated via Eq. 7, can be simply evaluated as

V al(O(k)
p (t)) $

∑

i∈Ip

P(L(k)
i (t)|I(k)(t)). (13)
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•  What prey to take  
(optimal diet choice)

•  What patch type to 
search (optimal patch 
choice)

•  When to leave a patch  
(optimal giving up or 
departure times, GUT)

•  How to move 
between patches 
(optimal movements)
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ABSTRACT Attention supports our urge to forage on social cues. Under certain circumstances, we spend
the majority of time scrutinising people, markedly their eyes and faces, and spotting persons that are talking.
To account for such behaviour, this paper develops a computational model for the deployment of gaze within
a multimodal landscape, namely a conversational scene. Gaze dynamics is derived in a principled way by
reformulating attention deployment as a stochastic foraging problem. Model simulation experiments on a
publicly available dataset of eye-tracked subjects are presented. Results show that the simulated scan paths
exhibit similar trends of eye movements of human observers watching and listening to conversational clips
in a free-viewing condition.

INDEX TERMS audio-visual attention, gaze models, social interaction, multimodal perception

I. INTRODUCTION

C
ONSIDER a clip displaying social interactions, in par-
ticular a conversational clip (audio and video): the

chief concern of this paper is to model the deployment of
attention through gaze by a human subject who is viewing
and listening to the clip.

Why should this research problem be relevant beyond its
merits?

One straightforward reason lies in the classic data mining
hurdle. YouTube, Twitch, Facebook Live contain myriads of
such clips [1], [2]. Also, large-scale multimodal data convey-
ing social interactions from non-laboratory settings are being
increasingly employed to analyse behaviours, emotions, and
interactions in real-life situations [3]. It goes without saying,
the processing of large spatio-temporal data from multiple
media in different contexts is a mind-blowing engineering
challenge: spotting sharable highlights, capturing socially
relevant events, generate value-based summaries to facilitate
browsing and skimming. All such problems call for an ability
that is germane to the successful performance of any cogni-
tive task: the ability to predict and to select where the most
meaningful and task-relevant information is to be found in
the sensory input.

A less evident, albeit earnest need takes root in the chal-
lenge of “subject’s mining”: the computational inference
of subject’s traits, or expertise, or even expectations from

attentive behaviour. Much can be gained indeed by analysing
the “mind’s eye” conduct of a subject who scrutinises and
forages on the behaviour of other subjects involved in social
interactions [4]–[7].

In a nutshell, the research problem addressed here is rel-
evant beyond its peculiar interest because it complies with a
quest for parsimony. Under a variety of circumstances, what
prima facie might come across as a conundrum of diverse
engineering problems, boils down to the modelling of one
and only skill: the effective deployment of attention that
organisms have evolved to promote survival and well-being.
Surprisingly, the dynamics of deployment has been hitherto
overlooked in computational approaches.

Problems and challenges. Throughout our lives, we are
bond to unfalteringly sample the environment. Moment-by-
moment we strive to answer the question: Where to look next?
Attention guides our gaze to the appropriate location of the
scene and holds it in that location for the deserved amount of
time given current processing demands [8].

In doing so, like other animals with as diverse evolutionary
backgrounds, we exhibit a consistent pattern of eye move-
ments. To illustrate at the finest “resolution scale” the signa-
ture of gaze dynamics, Fig. 1 plots the raw data recording
of one subject’s gaze. The trajectory of gaze is shown as
unfolding in time on an excerpt of subsequent frames: large
relocations are followed by local clustering of gaze points.
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1980). Koch and Ullman (1985) proposed that these
feature maps are combined into a salience map that is
followed by a winner-take-all network used to guide
visual attention. This basic conceptual framework was
later spelled out in more detail (Itti & Koch, 2000) and
tested numerous times using stimuli of different complex-
ity. Overall, the saliency map model is capable of
predicting fixation locations better than chance, but we
argue here that just exactly how well it performs depends
on many factors. In most cases, when passively viewing
static natural images, it performs just barely better than
chance (Betz, Kietzmann, Wilming, & König, 2010;
Tatler & Vincent, 2009).
In the most prominent implementation of a salience

model (Itti & Koch, 2000, 2001), the input image is first
linearly filtered at eight spatial scales and center–surround
differences are computed, both separately for three
features: intensity, color, and orientation. This resembles
transformations carried out by neurons in the early stages
of visual processing. After normalization, a conspicuity
map is created for each feature, which are finally merged
into a single saliency map. A winner-take-all network
detects the most salient point in the image.
One reason why the saliency map approach caught so

much attraction was its close relationship to our knowl-
edge of the early visual system. Nowadays, the idea of
parallel and independent pathways for the processing of

different visual attributes such as color, form, or motion is
no longer as dominant as it was in the 1980s. However,
this assumption is not crucial for the model. The main
assumption of the computation of local feature contrast
has found empirical support from V1 physiology
(reviewed in Carandini et al., 2005) and computational
support in models of V1 (Carandini & Heeger, 1994;
Carandini, Heeger, & Movshon, 1997). The putative
anatomical substrate of the saliency map—assumed to be
the LGN by Koch and Ullman (1985)—has been
attributed to a number of locations in the visual hierarchy.
Areas suggested include V1 (Li, 2002), V4 (Mazer &
Gallant, 2003), LIP (Kusunoki, Gottlieb, & Goldberg,
2000), and FEF (Thompson & Bichot, 2005). Maps in
some of these areas, typically higher up in the cortical
hierarchy, are often called priority maps, because they
integrate bottom-up visual salience and top-down signals
(Ipata, Gee, Bisley, & Goldberg, 2009). Most likely, each
one of the branches in the framework shown in Figure 1
has its own map, and possibly, all available information is
integrated into a common priority map. In such a frame-
work, the priority map would be closely linked with areas
that underlie the control of saccadic eye movements and,
therefore, most likely situated in frontal brain areas such
as the FEF (Schall & Thompson, 1999) or in parietal areas
such as the LIP (Goldberg, Bisley, Powell, & Gottlieb,
2006).

Figure 1. Framework for the control of saccadic eye movements. There are several interacting layers of control that influence saccadic
target selection. Figure modified after Fuster (2004).

Journal of Vision (2011) 11(5):9, 1–30 Schütz, Braun, & Gegenfurtner 3
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The evolutionary role of dopamine 
in the modulation of goal-directed behavior 
and cognition is further supported by 
pathologies of human goal-directed 
cognition, which have motor and cognitive 
dysfunction and organize themselves, with 
respect to dopaminergic activity, perseverative to 
unfocused. 

evolution of goal-directed cognition out of 
mechanisms 
initially in control of spatial foraging but, 
through increasing cortical connections, 
eventually used to forage for information 

Dopamine is a key component in foraging 
behaviors in invertebrates and vertebrates, in 
vertebrates dopamine is also associated with 
goal-directed cognition. 
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At the heart of purposive eye guidance 
//Value & reward: a doorway to emotions
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The relationship between cognition and 
emotion has fascinated Western philoso-
phers for centuries. It is not surprising that 
much of that attraction has permeated brain 
science in general. Early reports, such as the 
now classic case of Phineas Gage, described 
how damage to specific parts of the brain 
caused changes (or lack thereof) in cognitive 
and emotional behaviours. Indeed, since at 
least Broca (1824–1880) the concept of func-
tional localization has shaped our under-
standing of brain function. In attempting 
to localize affect in the brain, an appealing 
approach has been to separate the ‘emotional 
brain’ from the ‘cognitive brain’.

In this Perspective I will make a case for 
the notion, based on current knowledge 
of brain function and connectivity, that 
parcelling the brain into cognitive and 
affective regions is inherently problematic, 
and ultimately untenable for at least three 
reasons: first, brain regions viewed as ‘affec-
tive’ are also involved in cognition; second, 
brain regions viewed as ‘cognitive’ are also 
involved in emotion; and critically, third, 
cognition and emotion are integrated in 
the brain. In the past two decades, several 
researchers have emphasized that emotion 
and cognition systems interact in important 
ways1–7. Here, I will argue that there are no 

truly separate systems for emotion and cog-
nition because complex cognitive–emotional 
behaviour emerges from the rich, dynamic 
interactions between brain networks. Indeed, 
I propose that emotion and cognition not 
only strongly interact in the brain, but that 
they are often integrated so that they jointly 
contribute to behaviour. Moreover, I propose 
that emotion and cognition are only mini-
mally decomposable in the brain, and that 
the neural basis of emotion and cognition 
should be viewed as strongly non-modular.

Cognition and emotion
Cognition refers to processes such as 
memory, attention, language, problem 
solving and planning. Many cognitive pro-
cesses are thought to involve sophisticated 
functions that might be uniquely human. 
Furthermore, they often involve so-called 
controlled processes, such as when the 
pursuit of a goal needs to be protected from 
interference. A prototypical example of a 
neural correlate of a cognitive process is 
the sustained firing of cells in dorsolateral 
prefrontal cortex (DLPFC) as a monkey 
maintains information in mind for brief 
periods of time8,9. With the advent of func-
tional MRI (fMRI), a mounting literature 
documents how a variety of cognitive 

processes are linked to specific parts of the 
brain. According to this literature, in the vast 
majority of cases, cognitive processes appear 
to engage cortical regions.

Whereas there is relative agreement about 
what constitutes cognition, the same cannot 
be said about emotion. Some investigators 
use definitions that incorporate the concepts 
of drive and motivation: “emotions are 
states elicited by rewards and punishers”10. 
Others favour the view that emotions are 
involved in the conscious (or unconscious) 
evaluation of events11 (that is, appraisals). 
Some approaches focus on basic emotions12 
(for example, fear and anger), others on an 
extended set of emotions, including moral 
ones6,13 (for example, pride and envy). Strong 
evidence also links emotions to the body1,14. 
For the purpose of this article, because of the 
inherent difficulty in providing clear defini-
tions of both cognition and emotion, I will 
not further define these terms. 

Brain structures linked to emotion are 
often subcortical, such as the amygdala, 
ventral striatum and hypothalamus (BOX 1). 
These structures are often considered 
evolutionarily conserved, or ‘primitive’. They 
are also believed to operate fast and in an 
automatic fashion, so that certain trigger 
features (for example, the white of the eyes 
in a fearful expression15) are relatively unfil-
tered and always evoke responses that might 
be important for survival. Furthermore, the 
functioning of subcortical structures that 
mediate emotion is thought to be ‘unaware’. 
In other words, an individual is not neces-
sarily conscious of a stimulus that might 
have triggered brain responses in an affective 
brain region16,17.

Affective brain regions in cognition
The hypothalamus was one of the first 
regions linked to emotion. It was perhaps 
not until the proposal by Papez18 that a 
network theory for emotion was advanced. 
The so-called Papez circuit was further 
elaborated by MacLean19, whose proposal 
became enshrined in the ‘limbic system’ 
concept. Unfortunately, although the 
term limbic system continues to be widely 
used today, it fails to provide a coherent 
description of the emotional brain (BOX 2). 
The original set of regions proposed by 
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MacLean includes many areas that are no 
longer viewed as critically linked to affect, 
such as the hippocampus (but see REF. 5).  
Conversely, many areas that were not 
originally included in the limbic system are 
believed to have important affective func-
tions, for example the orbitofrontal cortex 
(OFC). Over the years, the set of regions 
that constitute the emotional brain has fluc-
tuated considerably. What are the reasons 
for this state of affairs?

This Perspective shows that it has proven 
difficult to define the emotional brain 
because each one of the ‘core’ and ‘extended’ 
affective regions (BOX 1) is itself a complex 
area that is involved in numerous functions. 
Critically, these functions do not map cleanly 
onto ‘affective functions’ (see also REFS. 

20,21). I will briefly illustrate this problem 
for the amygdala, a core ‘affective’ region, 
although the same could be done for other 
regions (such as the nucleus accumbens). For 
simplicity, in the remainder of this article, I 
will largely drop the quotes from ‘affective’ 
and ‘cognitive’. Also, the terms ‘affect’ and 
‘emotion’ will be used synonymously.

The amygdala in attention. Although 
more nuanced views of amygdala function 
have been suggested22–24 (see also REF. 25), 
most proposals describe this structure in 
terms of affective functions. Indeed, the 
amygdala is often categorized as an affective 
region strongly linked to fear processing26,27. 
Evidence concerning fear conditioning in 
rats, deficits in the recognition of fearful 
expressions in patients with bilateral  
amygdala lesions and the robust responses 
evoked by fearful faces in neuroimaging 
studies, have popularized the view of the 
amygdala as a ‘fear centre’. However, this 
structure is also involved in several functions 
that are closely linked to cognition, including 
attention and associative learning28.

A central function of attention, a para-
digmatic cognitive process, is to modulate 
sensory processing. For instance, attention 
to a stimulus increases neuronal firing rates 
(and fMRI responses) in sensory cortex and 
is believed to improve behavioural perform-
ance29,30. Such ‘competitive advantage’ also 
occurs during the viewing of emotion-laden 
visual stimuli31,32. The amygdala probably 

underlies these effects. Indeed, recent studies 
have provided evidence that the amygdala 
mediates the processing advantage of emo-
tional items33. Furthermore, in neuroimag-
ing studies, amygdala activation is correlated 
with activation in the visual cortex34,35 and 
this correlation is attenuated in patients with 
amygdala damage36. Thus, the amygdala 
might underlie a form of emotional modu-
lation of information that in many ways 
parallels the attentional effects observed in 
the visual cortex.

For instance, during conditions of  
spatial competition during which target 
letters were shown superimposed on 
task-irrelevant photos of faces, affectively 
significant faces (owing to prior pairing 
with mild electrical stimulation) were 
more strongly encoded even though they 
were task-irrelevant37. In a second study, 
participants exhibited increased sensitivity 
to shock-paired relative to unpaired faces38: 
during a neutral/fearful discrimination 
task, they were more likely to report com-
puter-morphed, graded faces as ‘fearful’ 
if they were shown in a colour that was 
previously paired with shock. Finally, in a 
third study, participants exhibited increased 
sensitivity for visual patches that were previ-
ously paired with shock39. Notably, increases 
in detection performance were paralleled by 
increases in visual activation across  
retinotopically organized cortex, includ-
ing the primary visual area (V1). Overall, 
increasing the affective significance of a 
stimulus in a manner that is believed to be 
strongly amygdala-dependent3,40 has effects 
that are similar to those of increased  
attention (see also REFS 41–43). 

A widespread view is that the amygdala 
functions in a largely automatic fashion that 
is independent of top-down factors such as 
attention and task context4,16 and thus, inde-
pendent of conscious awareness. Consistent 
with this notion, amygdala responses are 
observed under conditions of inattention44 
and with minimal sensory input15. Recent 
studies have shown, however, that the amyg-
dala functions in a manner that is closely 
tied to top-down factors45–58. For instance, 
amygdala responses are strongly dependent 
on attention, even for stimuli that are affec-
tively significant (owing to previous pairing 
with mild shocks)37. Amygdala responses 
appear to be closely linked to perception, 
and are not simply predicted by the physical 
characteristics of the stimulus — for exam-
ple, responses to a briefly presented, fearful 
face differ greatly depending on whether 
participants actually report perceiving a fear-
ful face49. In general, controlling attention to, 

 Box 1 | The emotional brain: core and extended regions

Summarizing the set of brain regions that comprise the emotional brain is plagued by possibly 
insurmountable conceptual difficulties. Nevertheless, some regions feature prominently in the 
discourse surrounding affective neuroscience. They are listed here based on an informal assessment 
of the frequency with which they appear in the literature; regions appearing with greater frequency 
will be labelled ‘core’, and less frequent ones as ‘extended’. The core emotional regions (dark red 
areas in figure) include, subcortically, the amygdala, the nucleus accumbens (NA) and the 
hypothalamus, and cortically, the orbitofrontal cortex (OFC), the anterior cingulate cortex (ACC) 
(especially the rostral part) and the ventromedial prefrontal cortex (VMPFC). Extended regions 
(brown areas) include, subcortically, the brain stem, the ventral tegmental area (VTA) (and associated 
mesolimbic dopamine system), the hippocampus, the periaquaeductal grey (PAG), the septum and 
the basal forebrain (BF) (including the nucleus basalis of Meynert); and cortically, the anterior insula 
(AI), the prefrontal cortex (PFC), the anterior temporal lobe (ATL), the posterior cingulate cortex 
(PCC), superior temporal sulcus, and somatosensory cortex. Although one could attempt to link the 
core and extended regions to specific affective functions, such an attempt would be largely 
problematic because none of the regions is best viewed as ‘purely affective’.
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studies, have popularized the view of the 
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structure is also involved in several functions 
that are closely linked to cognition, including 
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digmatic cognitive process, is to modulate 
sensory processing. For instance, attention 
to a stimulus increases neuronal firing rates 
(and fMRI responses) in sensory cortex and 
is believed to improve behavioural perform-
ance29,30. Such ‘competitive advantage’ also 
occurs during the viewing of emotion-laden 
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ing studies, amygdala activation is correlated 
with activation in the visual cortex34,35 and 
this correlation is attenuated in patients with 
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might underlie a form of emotional modu-
lation of information that in many ways 
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ing the primary visual area (V1). Overall, 
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stimulus in a manner that is believed to be 
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attention (see also REFS 41–43). 

A widespread view is that the amygdala 
functions in a largely automatic fashion that 
is independent of top-down factors such as 
attention and task context4,16 and thus, inde-
pendent of conscious awareness. Consistent 
with this notion, amygdala responses are 
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