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Yet, we have this wandering eye...
//at the heart of active sensing
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Computational models of eye guidance
\\the bare essence

|.Where do people look?
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2. How do people look there?
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Computational models of eye guidance
\\the bare essence

2. How do people look there?
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Computational models of eye guidance
//The historical baseline: Itti, Koch & Niebur model

|.Where do people look?
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Computational models of eye guidance
\\the bare essence

‘ |.Where do people look?

I—-R (eg,saliency map)

R {rr(l),rp(2),---}
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2. How do people look there!?
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Computational models of eye guidance
//anatomy & misery of saliency maps
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Computational models of eye guidance
//anatomy & misery of saliency maps

ﬂuum-- |.Where do people look!?
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Computational models of eye guidance
//anatomy & misery of saliency maps

data likelihood under the shift

posterior prob. of gaze shift e N gaze shift prior
— PW |r
Pr|W) = OV |r) P(r
PW)

‘ this is a shift




Computational models of eye guidance
//anatomy & misery of saliency maps

data likelihood under the shift

posterior prob. of gaze shift /(—/T) gaze shift prior
o PW |r
P(r|wW = P(r
(r | .) | | POV)
this is a shift

P(r) = P(rp(t) —rr(t —1)) = P(rp(t) | rr(t — 1)) = P(rp(t))

data likelihood under gaze at

posterior prob. of gazing at p -\ < prior prob. of gazing at
— _ POW |rp) ‘ ‘
P = P(rp)
(rF ‘ W) P(W)

this is a point
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Computational models of eye guidance
//anatomy & misery of saliency maps

data likelihood under the shift

posterior prob. of gaze shift e N gaze shift prior
T PW |r
Pr|W) = OV |r) Plr

. | PW)
this is a shift

P(r) = P(rp(t) —rr(t —1)) = P(rp(t) | rr(t — 1)) = P(rp(t))

data likelihood under gaze at

posterior prob. of gazing at p -\ < prior prob. of gazing at
— _ POW |rp) ‘ ‘
P = P(rp)
(rF ‘ W) P(W)

this is a point

feature likelihood under location L

posterior prob. of selecting location L /T/h prior prob. of location L
P(L | F = P(L
(L) o (T)
this is a map
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Computational models of eye guidance

//anatomy & misery of saliency maps

data likelihood under the shift

posterior prob. of gaze shift /(—/T) gaze shift prior
o PW |r
P(r|wW = P(r
(r | .) | | POV)
this is a shift

P(r) = P(rp(t) —rr(t —1)) = P(rp(t) | rr(t — 1)) = P(rp(t))

data likelihood under gaze at

posterior prob. of gazing at p -\ < prior prob. of gazing at
o POV |rp) Plre
P(rp|W) = P(rr)
this is a point
feature likelihood under location L
posterior prob. of selecting location L e prior prob. of location L
P(L | F) = PEIL) P(L)
P(F)

thisisamap P(F | L) = P(L) = const.

salience at location L

posterior prob. of selecting location L ——
P(L | F) x — . (Itti & Koch)
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Computational models of eye guidance
//anatomy & misery of saliency maps

posterior prob. of selecting location L
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Computational models of eye guidance
//anatomy & misery of saliency maps

feature likelihood under location L

posterior prob. of selecting location L e N prior prob. of location L
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O sum up...

Plans/Task
<€
>
T l Value T l
3 o <
Journal of Vision (2011) 11(5):9, 1-30 http://www.journalofvision.org/content/11/5/9 )
E ts and tion: A selective revi Object
ye movements and perception. selective review recognition
. Department of Psychology, Gieen University,
Alexander C. Schiitz GieBen, Germany <« ~
. Department of Psychology, Gieien University,
Doris I. Braun GieBen, Germany
Department of Psychology, Gieen University, Sallence
Karl R. Gegenfurtner GieBen, Germany l¢
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O sum up...

Plans/Task

>
Value T l
>
Object
recognition
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IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO.1, JANUARY 2013

State-of-the-Art in Visual Attention Modeling

Ali Borji, Member, IEEE, and Laurent Itti, Member, IEEE

65 models:
variations,
variations of variations,
variations of variations of variations,......
on base schemes (Itti & Koch)

Environment



Computational models of eye guidance
//anatomy & misery of saliency maps

F‘uum-- |.Where do people look!?
E:Hllg== o
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(e.g., saliency map)
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2. How do people look there?

arg max kR
deterministic gaze shift,
no variability!
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The problem of variability
// How random are gaze shifts”
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The problem of variability
// How random are gaze shifts”

(Itti & Koch)

Human
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The problem of variability
//Oculomotor tendencies

Frequency
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VISUAL COGNITION, 2009, 17 (6/7), 1029-1054 \_P Psychology Press

—— Natural movies
T\e ® - - - Static images
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Amplitude [deg]

Tayior & Francis Croup
The prominence of behavioural biases in eye guidance

Benjamin W. Tatler and Benjamin T. Vincent
University of Dundee, Dundee, UK

normalised probability density
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The problem of variability
//Oculomotor tendencies

Journal of Vision (2011) 11(5):5, 1-23 Tatler, Hayhoe, Land, & Ballard
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The problem of variability
//Oculomotor tendencies

 Oculomotor tendencies:

» regularities that are common across all instances of
and manipulations to the behavior

« Jatler & Vincent:

+ a model based on oculomotor biases alone
performs better than the standard salience model

If one samples from blind to visual information, out-performs
prior only feature-based accounts of eye guidance:

r(r) ~P(r(r)), t=12,-- 0. 648 area under the receiver operator
curve (AUC) as opposed to 0. 593 for
edge information and 0. 565 for salience
information!



Computational models of eye guidance
//bringing variability into the game
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Computational models of eye guidance
\\the bare essence

1500 —

2. How do people look there?
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Computational models of eye guidance
//bringing variability into the game
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Computational models of eye guidance
//bringing variability into the game
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Fig. 1. Left, Center: Two typical scanpaths on different trials by the same subject. Each scanpath consists of
approximately 350 saccades. Right: Saccadic magnitude histogram calculated from the scanpaths depicted.
@ denotes saccadic magnitude in degrees of visual angle.

27



Bringing variability into the game
//anomalous walks

Brownian (Gaussian) Cauchy
walk walk
646 D. Brockmann, T. Geisel | Neurocomputing 32—33 (2000) 643 —650
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Fig. 1. Left, Center: Two typical scanpaths on different trials by the same subject. Each scanpath consists of
approximately 350 saccades. Right: Saccadic magnitude histogram calculated from the scanpaths depicted. 28
@ denotes saccadic magnitude in degrees of visual angle.




Bringing variability into the game
//anomalous walks

Levy alpha-stable
distributions

T T T T T T T T T T T T
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Cauchy Gaussian
walk walk 29



(Gaze-shift as a constrained random walk
// Boccignone & Ferraro (Physica A, 2004)

Deterministic component
(potential)

Random component

l°new(t) — l’( t)—VV+ N potential

Constrained \ I

Levy Search




(Gaze-shift as a constrained random walk
// Boccignone & Ferraro (Physica A, 2004)

Successful Applications: Robot Action Learning
for the iCub
(Nagai. 2009)

ereen cup yellow cup
= .

pick up put down move next

red cup @
(a) Stochastic algorithm wirh .
retinal filter

-—— P ———> - » | I »
pick up put down moven. pickup® putdown® move next®

(a) Object and motion chunks created through task demonstration

(b) Winner-take-all algorithm (c) Winner-take-all algorithm
with retinal filter without retinal filter

Fig. 7. Transition of attention of proposed model (a) and two comparative
models, (b) and (c). The line color corresponds to the cup color.

(b) Action map for moving green. vellow. and red cups



Computational models of eye guidance
//gaze shifts as actions

Action
control

Gaze shift

Perceptual
evaluation

Stimulus
32




Computational models of eye guidance
//gaze shifts as actions

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 2, FEBRUARY 2014

Ecological Sampling of Gaze Shifts

Giuseppe Boccignone and Mario Ferraro

4\ Matlab simulation code:;

https://github.com/phuselab/EcoSampling
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Ecological sampling of gaze shifts
//sampling the landscape

® Sampling the natural habitat
WH(t) ~ POV(t)|rr(t). F(t),1(1))

Perceptual
evaluation




Ecological sampling of gaze shifts
//sampling the oculomotor action

° Sampling the appropriate motor behavior
£)* (At —1).
Action
co;trol K (t+1)
rF(t) Flt+1) <

Perce tual
ol Wt \/ W(t +1) C(t) = A(t) - Q(t)

oculomotor prior l

7" (t) ~ Dir(m|v(O(t)))

T~

25(t) ~ Mult(z(t)|7*(t))

35
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Ecological sampling of gaze shifts
//oculomotor actions: fixate, pursuit, saccade

Gaze length distribution: comp. #1 CCDF from human data
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Ecological sampling of gaze shifts
//sampling the oculomotor action

® Sampling where to look next
rp(t+1) ~ P(rp(t+1)[A()", W*(t),rr(t))

Action - R .

Cenroy /€10 5:7.0) - Alt+1)
rp(t)

PercepFuaI W(t) W(t + 1)

evaluation

£ ~ f(€ Y. 3 Y, (5)
Alpha-stable (Levy flight)




Ecological sampling of gaze shifts
//some results...

o CCDF: comp.#1(all subj.) o CCDF: comp.#1(Eco Sampl.)
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Computational models of purposive eye guidance
// decisions on actions: considering task / goals

<

_|_ 1) Action

A control

Gaze shift

Perceptual
evaluation

Stimulus
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Some key points of this talk
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Computational models of purposive eye guidance
// Considering task / goals

mobile
eye-tracking
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Computational models of purposive eye guidance
// Bayesian Decision Theory

internal
states Models

Fm
Goaly ™ (i) (2o M M)

g stimulus
\ vaITue reward
Qnow(aa ”:D(X’Z():t, — ZR a X X|ZO t M)
action

Theoretical perspectives on active sensing
Scott Cheng-Hsin Yang', Daniel M Wolpert'* and
Maté Lengyel’?°

Curren t Opinion in Behavioral Sciences 2016, 11:100-108
42



Computational models of purposive eye guidance
// Considering task / goals

Action
control

Perceptual
evaluation

Goal,

Task
i

— Action

Y Value
‘(Vg(t) representation

a

£=1---N,

representation

N\
L(t)—
Priority
/I representation

\ X(%) [Op(t) ]
\ | 1N
- Proto-object
I(L) -~ representation
s | Perception

<

Decision

Max
Expected

Reward
rr(t+1) = argn%ng |:R(k) ]

(k)
r
Tow new
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Computational models of purposive eye guidance
// Considering task / goals

High level
of representation

Low level
of representation

Value for text
(search task)

Obiject-based perception
(free viewing task)

Early salience based
perception
(free viewing task)

Value for people
(search task)
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he foraging perspective
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Back to the random walks....
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he foraging perspective
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he foraging perspective

Foraging pattern of spider
monkeys in the Yucatan
Peninsula

“Foraging pattern” of the eye

Number of saccades of size 0

0 s 10 15 20

Long-tail distributions
beyond the Central Limit
Theorem

Anomalous diffusion
(Cauchy walk)
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he foraging perspective
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he foraging perspective

Retinal Image

visual
patch

visual
patch

visual
patch

visual
patch

the foraging perspective




he foraging hypothesis

What was once

foraging in a physical space for
tangible resources

became, over evolutionary
time, foraging in cognitive
space for information related
to those resources

visual
patch

visual
patch

visual
patch

visual
patch

the foraging perspective




The foraging perspective
//optimal foraging theory

S i

- 0¥
&) @ ..

Patch exploitation
+

Inter-patch movement

« When to leave a patch

What prey to take
(optimal diet choice)

What patch type to
search (optimal patch
choice)

(optimal giving up or

departure times, GUT)

How to move
between patches
(optimal movements)




The foraging perspective
//Charnov’s Marginal Value Theorem
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How do we look at social scenes?”?

mmmmm

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. [| N p reSS]
Digital Object Identifier 10.110%ACCESS.2020.D01

On gaze deployment to audio-visual
cues of social interactions

GIUSEPPE BOCCIGNONE, VITTORIO CUCULO, ALESSANDRO D’AMELIO, GIULIANO 1791 m
GROSSI AND RAFFAELLA LANZAROTTI O rl g I n a I F ra e
PHuSe Lab - Dipartimento di Informatica, Universitd degli Studi di Milano, 0 —

multimodal stimulus
(video + audio)

400

600
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How do we look at social scenes?

Endogenous Action
Goal, / control
Task
Gaze shift
Perceptual
evaluation

Stimulus
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How do we look at social scenes?”?

social context and multimodal stimuli foraging in the multimodal landscape

salient objects / events in stimuli <—[ patch [ patch )
L ) exploitation J| exploration
r ¢ 1
[ visual ] [audiovisual ]
priority map priority map e Satch
\ patches / attractors for multimodal attentionJ L[ sampling [ sampling ]J

[ [ I

[ selection history} [ cuarrr](einvta%g: : J




How do we look at social scenes”?
//value-based patches

Patches = speaker, non speaker, hand (gestures),

] b N i
k . . 3 )| ' g
II \ ; 1 (I"(\‘_i L
AL B ¢
’ l |
‘l> ;...

600

inferred
from
behaviour



How do we look at social scenes?
//Qiving-up time of a patch (stochastic Charnov)

Cumulative 4

reward or
energy gain

within

leave  |eave
earlier  |ater



How do we look at social scenes”?
//exploitation vs. exploration random walks

Exploitation
within
patch

Exploration between patches



How do we look at social scenes?
//exploitation vs. exploration random walks

Original Frame

0 200 400 600 800 1000 1200
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How do we look at social scenes?
//exploitation vs. exploration random walks

Saccades Amplitude Distributions

Real
Generated

0 200 400 600 800 1000

Shift amplitude
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Computational models of purposive eye guidance
// the value of “value” (and reward)

value

Foraging decisions

Patch choice
Patch leave
Prey choice

Prey leave

Task, Goal

l

Action

&

Perception

|

Stimulus

€ >
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T l Object T l
recognition
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T l Salience T l
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motor sensor
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Environment
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At the heart of purposive eye guidance
//the dopamine hypothesis (Hills)

Cognitive Science 30 (2006) 3—41
Copyright © 2006 Cognitive Science Society, Inc. All rights reserved.

Animal Foraging and the Evolution
of Goal-Directed Cognition

Thomas T. Hills

OCD, TS Schizophrenia ADHD
evolution of goal-directed cognition out of v ---T-‘..‘.T.‘..‘T.’----i-}
mechanisms | | Focused Diffuse
initially in control of spatial foraging but, Toomuch DA = > Toolitle DA
through increasing cortical connections,
eventually used to forage for information ? T T
Stereotypic Addiction Parkinsonism
Autism

The evolutionary role of dopamine

in the modulation of goal-directed behavior
and cognition is Ffurther supported by
pathologies of human goal-directed
cognition, which have motor and cognitive
dysfunction and organize themselves, with
respect to dopaminergic activity, perseverative to
unfocused. >

Dopamine is a key component in Fforaging
behaviors in invertebrates and vertebrates, in
vertebrates dopamine is also associated with
goal-directed cognition.




At the heart of purposive eye guidance
//the dopamine hypothesis (Hills)

Focused
Too much DA o
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Computational models of eye guidance
//bringing emotions into the game

_ : Bayesian
Bayesian modelling Decision-making

theory \

Stochast. processes AmeiienE
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modelling

Eye guidance
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At the heart of purposive eye guidance
//NValue & reward: a doorway to emotions

On the relationship between
emotion and cognition

, Action
Luiz Pessoa

NATURE REVIEWS [NEUROSCIENCE VOLUME 9 | FEBRUARY 2008 | 14 CO ntrol
Nucleus Anterior cmgulate
accumbens cortex : \‘

Lateral prefrontal

cortex
Ventral
tegmental area Orbito-frontal
cortex
Basal
<l
& t Perceptual
evaluation

Early visual Late visual
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Future work
//bridging active sensing and emotions
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Future work
//bridging active sensing and emotions

\

A

\-

68



Future work
//bridging active sensing and emotions
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Future work
//bridging active sensing and emotions

A(t + 1) Action

control
A

Gaze shift

Cognitive
evaluation

> C(t 1)
g(t + 1) Core affect

evaluation

Reward and
attention
modulation

Physiological
evaluation

W(t 4 1) Percept.ual

evaluation

Stimmus
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