A probabilistic tour of visual attention and gaze shift computational models

Active Vision and perception in Human (-Robot) Collaboration (AVHRC 2020) September, 2020 Giuseppe Boccignone

Dipartimento di Informatica Università di Milano

Giuseppe.Boccignone@unimi.it

http://phuselab.di.unimi.it

li.unimi.it and HUman SEnsing

Some key points of this talk

Yet, we have this wandering eye... //at the heart of active sensing

Computational models of eye guidance \\the bare essence

Computational models of eye guidance \\the bare essence

Computational models of eye guidance //The historical baseline: Itti, Koch & Niebur model

Computational models of eye guidance \\the bare essence

 $\mathbf{r}_F(t)
ightarrow \mathbf{r}_F(t+1)$ 10

 $\mathbf{r}_F(t) \rightarrow \mathbf{r}_F(t+1)$ 11

To sum up...

To sum up...

17

I.Where do people look? $I \mapsto \mathcal{R}$ (e.g., saliency map)

$$\mathcal{R} \mapsto \{\mathbf{r}_F(1), \mathbf{r}_F(2), \cdots\}$$

1

. How do people look there?

 $\operatorname{arg} \max \mathcal{R}$

The problem of variability // How random are gaze shifts?

The problem of variability // How random are gaze shifts?

Human

The problem of variability //Oculomotor tendencies

VISUAL COGNITION, 2009, 17 (6/7), 1029-1054

Psychology Press Taylor & Francis Croup

The prominence of behavioural biases in eye guidance

Benjamin W. Tatler and Benjamin T. Vincent University of Dundee, Dundee, UK

normalised probability density

The problem of variability //Oculomotor tendencies

The problem of variability //Oculomotor tendencies

- Oculomotor tendencies:
 - regularities that are common across all instances of and manipulations to the behavior
 - Tatler & Vincent:
 - a model based on oculomotor biases alone performs better than the standard salience model

If one samples from prior only

 $\mathbf{r}(t) \sim P(\mathbf{r}(t)), \quad t = 1, 2, \cdots$

blind to visual information, out-performs feature-based accounts of eye guidance:

0. 648 area under the receiver operator curve (AUC) as opposed to 0. 593 for edge information and 0. 565 for salience information!

Computational models of eye guidance //bringing variability into the game

$$\mathbf{r}_F(t) \longrightarrow \mathbf{r}_F(t+12)$$

Computational models of eye guidance \\the bare essence

Computational models of eye guidance //bringing variability into the game

Computational models of eye guidance //bringing variability into the game

Neurocomputing 32-33 (2000) 643-650

The ecology of gaze shifts

Dirk Brockmann*, Theo Geisel

Fig. 1. Left, Center: Two typical scanpaths on different trials by the same subject. Each scanpath consists of approximately 350 saccades. Right: Saccadic magnitude histogram calculated from the scanpaths depicted. Θ denotes saccadic magnitude in degrees of visual angle.

Bringing variability into the game //anomalous walks

Fig. 1. Left, Center: Two typical scanpaths on different trials by the same subject. Each scanpath consists of approximately 350 saccades. Right: Saccadic magnitude histogram calculated from the scanpaths depicted. Θ denotes saccadic magnitude in degrees of visual angle.

Bringing variability into the game //anomalous walks

Gaze-shift as a constrained random walk // Boccignone & Ferraro (Physica A, 2004)

Gaze-shift as a constrained random walk // Boccignone & Ferraro (Physica A, 2004)

Successful Applications: Robot Action Learning for the iCub (Nagai. 2009)

(a) Stochastic algorithm *with* retinal filter

(b) Winner-take-all algorithm (c) Winner-take-all algorithm *with* retinal filter *without* retinal filter

Fig. 7. Transition of attention of proposed model (a) and two comparative models, (b) and (c). The line color corresponds to the cup color.

Computational models of eye guidance //gaze shifts as actions

Computational models of eye guidance //gaze shifts as actions

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 2, FEBRUARY 2014

Ecological Sampling of Gaze Shifts

Giuseppe Boccignone and Mario Ferraro

Matlab simulation code:

https://github.com/phuselab/EcoSampling

Ecological sampling of gaze shifts //sampling the landscape

• Sampling the natural habitat $W^*(t) \sim P(W(t)|\mathbf{r}_F(t), \mathbf{F}(t), \mathbf{I}(t))$

Ecological sampling of gaze shifts //sampling the oculomotor action

• Sampling the appropriate motor behavior $\mathcal{A}(t)^* \sim P(\mathcal{A}(t)|\mathcal{A}(t-1), \mathcal{W}^*(t))$

Ecological sampling of gaze shifts //oculomotor actions: fixate, pursuit, saccade

Ecological sampling of gaze shifts //sampling the oculomotor action

• Sampling where to look next $\mathbf{r}_F(t+1) \sim P(\mathbf{r}_F(t+1)|\mathcal{A}(t)^*, \mathcal{W}^*(t), \mathbf{r}_F(t))$

Ecological sampling of gaze shifts //some results...

Computational models of purposive eye guidance // decisions on actions: considering task / goals

Some key points of this talk

Computational models of purposive eye guidance // Considering task / goals

homography derived panoramic image

Computational models of purposive eye guidance // Bayesian Decision Theory

Current Opinion in Behavioral Sciences 2016, 11:100–108

Computational models of purposive eye guidance // Considering task / goals

Computational models of purposive eye guidance // Considering task / goals

Value for people (search task)

Eye guidance modelling Bayesian Decision-making theory Emotions & Lèvy flights

Back to the random walks....

Anomalous diffusion (Cauchy walk)

The foraging perspective

The foraging hypothesis

What was once foraging in a physical space for tangible resources became, over evolutionary time, foraging in cognitive space for information related to those resources

The foraging perspective //optimal foraging theory

- What prey to take (optimal diet choice)
- What patch type to search (optimal patch choice)
- When to leave a patch (optimal giving up or departure times, GUT)
- How to move between patches (optimal movements)

The foraging perspective //Charnov's Marginal Value Theorem

• When to leave a patch (optimal giving up or departure times, GUT)

How do we look at social scenes?

IEEEAccess* Multidisciplinary : Rapid Review : Open Access Journal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. (in press)

On gaze deployment to audio-visual cues of social interactions

GIUSEPPE BOCCIGNONE, VITTORIO CUCULO, ALESSANDRO D'AMELIO, GIULIANO GROSSI AND RAFFAELLA LANZAROTTI

multimodal stimulus (video + audio)

How do we look at social scenes?

How do we look at social scenes?

How do we look at social scenes? //value-based patches

Patches = speaker, non speaker, hand (gestures), body (gestures),

How do we look at social scenes? //giving-up time of a patch (stochastic Charnov)

How do we look at social scenes? //exploitation vs. exploration random walks

Exploitation within patch Exploration between patches

How do we look at social scenes? //exploitation vs. exploration random walks

0.00

0

20

40

60

speaker Non speaker

Uniform

80

100

CB

STS

How do we look at social scenes? //exploitation vs. exploration random walks

Computational models of purposive eye guidance // the value of "value" (and reward)

At the heart of purposive eye guidance //the dopamine hypothesis (Hills)

Cognitive Science 30 (2006) 3–41 Copyright © 2006 Cognitive Science Society, Inc. All rights reserved.

Animal Foraging and the Evolution of Goal-Directed Cognition

Thomas T. Hills

evolution of goal-directed cognition out of mechanisms

initially in control of spatial foraging but, through increasing cortical connections, eventually used to forage for information

Dopamine is a key component in foraging behaviors in invertebrates and vertebrates, in vertebrates dopamine is also associated with goal-directed cognition.

The evolutionary role of dopamine

in the modulation of goal-directed behavior and cognition is further supported by pathologies of human goal-directed cognition, which have motor and cognitive dysfunction and organize themselves, with respect to dopaminergic activity, perseverative to unfocused.

At the heart of purposive eye guidance //the dopamine hypothesis (Hills)

Computational models of eye guidance //bringing emotions into the game

At the neart of purposive eye guidance Nature Reviews Neuroscience Nature Reviews Na

On the relationship between emotion and cognition

Superior

temporal sulcus

Superior

temporal sulcus

Thank you!