## Search professional development courses

Click 'Search' to view all professional development courses.

Clearing 2015

## International Prospectus 2015

What three words do you associate with Essex?

Select the image that matches the one in the box

[Important data protection stuff]

## Upcoming open days

Colchester Campus
Saturday 19 September 2015 (booking now)
Saturday 24 October 2015 (booking now)
Southend Campus
Saturday 10 October 2015 (booking now)
Colchester Campus
Saturday 19 September 2015 (booking now)

## Tour details

Colchester Campus
Southend Campus

Select the image that matches the one in the box

Select the image that matches the one in the box

# Module details

## MA108-4-SP: Statistics I

Year: 2015/16
Department: Mathematical Sciences
Essex credit: 15
ECTS credit: 7.5
Available to year(s) of study:
Available to Study Abroad / Exchange Students: Yes
Full Year Module Available to Study Abroad / Exchange Students for a Single Term: No

Staff
Supervisor: Dr Martin Griffiths, email: maths@essex.ac.uk
Teaching Staff: Dr Martin Griffiths, email: maths@essex.ac.uk
Contact details: Miss Claire Watts, Departmental Administrator, Tel. 01206 873040, email cmwatts (Non essex users should add @essex.ac.uk to create the full email address)

 Module is taught during the following terms Autumn Spring Summer

### Module Description

This course introduces students to the basic ideas of probability (combinatorial analysis and axioms of probability), conditional probability and independence, probability distributions and provides introductions to the handling data using descriptive statistics. The course uses R software package to clarify and illustrate theoretical concepts of probability, to show how random variables are generated and how they vary, to know how to construct appropriate diagrams for data summary.

Syllabus

Descriptive statistics:

Data collection and summary. Stem/leaf plots and histograms. Measures of location (Mode, median, mean).

Measures of spread. Quartiles. Box plots. Variance and standard deviation. Transformations.

Probability:

Relative frequency. Probability as a limit. Events. Union and intersection. Addition rule. Exclusive events. Independent events. Multiplication rule.

Permutations and combinations.

Conditional probability. Total probability theorem, Bayes' theorem.

Discrete probability distributions:

Discrete random variables. Probability distributions. Expectation. Algebra of expectations.

Variance. Bernoulli distribution. Binomial distribution (sampling with replacement).

Mean and variance of Bernoulli and binomial.

Poisson distribution (and applications).

Derivation of the Poisson. Approximation to the binomial.

Continuous probability distributions:

Density function as limit of histograms. Properties of probability density function (pdf). Cumulative distribution function (cdf). Uniform and exponential distribution. Expectations. Variance. Median, mode. Distributions of functions of random variables; change of variables formula.

Normal distribution. Use of tables. Central limit theorem. Additivity.

Moment generating function;

On completion of the course students should be able to:

- understand how to calculate and interpret simple summary statistics;

- how to choose and construct appropriate diagrams to illustrate data sets;

- use R for the data analysis examples of the course;

- understand and apply the addition rule and multiplication rule of probability;

- understand the basic ideas of conditional probability including the application of the total probability theorem and Bayes' theorem;

- understand and recognise situations appropriate for Binomial and Poisson models;

- calculate expectations and variances for discrete and continuous random variables, understand the ideas of probability density function and the distribution function;

- understand the change of variables formula and know how to calculate the distributions of functions of random variables

- understand moment generating functions

- recognise the central role of the normal distribution, be able to reduce normal random variables to standard form and be able to use tables of normal probabilities;

- understand the basic ideas of central limit theorem.

### Learning and Teaching Methods

This course consists of 30 contact hours consisting of 20 lectures and 10 classes. Coursework consists of 4 pieces of homework. There are three revision lectures in the summer term.

### Assessment

20 per cent Coursework Mark, 80 per cent Exam Mark

Coursework:
4 pieces of homework.

Other details:
Information about coursework deadlines can be found in the "Coursework Information" section of the Current Students, Useful Information Maths web pages: Coursework and Test Information

### Exam Duration and Period

1:30 hour exam during Summer Examination period.

### Other information

'A' level Maths or equivalent normally required. Available independently to Socrates/IP students spending all relevant terms at Essex.