Module Details

MA104-4-AU-CO: Calculus

Note: This module is inactive. Visit the Module Directory to view modules and variants offered during the current academic year.

Year: 2017/18
Department: Mathematical Sciences
Essex credit: 15
ECTS credit: 7.5
Available to Study Abroad / Exchange Students: Yes
Full Year Module Available to Study Abroad / Exchange Students for a Single Term: No
Outside Option: No

Supervisor: Dr Daniel Brawn
Teaching Staff: Dr Dan Brawn, email:
Contact details: Miss Claire Watts, Departmental Administrator, Tel. 01206 873040, email

Module is taught during the following terms
Autumn Spring Summer

Module Description

This course revises ideas associated with continuous functions, including the idea of an inverse, differentiation and integration, and sets them in a more fundamental context which permits a better understanding of their properties. Differential equations are introduced, and methods for solving them are studied. The properties of inequalities are reviewed. Complex numbers in Cartesian form are introduced.


Geometry and Trigonometry:
- Pythagoras' theorem; trigonometric functions.
- Basic manipulation of inequalities
Functions of one variable:
- the functions exp, ln, xa, |x|, trigonometric and hyperbolic functions; their domains and their graphs;
- power laws; exp(x+y), ln(xy);
- derivatives of xa, exp, sin, cos, ln;
- differentiation of sums, products and quotients;
- function of a function; chain rule for differentiation;
- inverse functions;
- stationary points;
- indefinite integrals as antiderivatives; definite integrals; improper integrals;
- division of polynomials, partial fractions, integration of rational functions;
- integration by parts and by substitution
- first order differential equations; separation of variable and integrating factor.

Complex numbers:
- addition, subtraction, multiplication and division in Cartesian form
- the Argand diagram

On completion of the course, students should be able to:
- be able to use Pythagoras's Theorem and the basic concepts of trigonometry;
- be familiar with elementary functions, the basic rules of the differential and integral calculus for functions of one variable;
- be familiar with the idea of a domain of definition and an inverse function;
- be able to manipulate inequalities;
- add, subtract, multiply, and divide complex numbers in Cartesian form;
- plot complex numbers on an Argand diagram;
- solve first order differential equations.

Learning and Teaching Methods

This course consists of 30 contact hours given at 3 hours per week commencing in week 2 (the first teaching week). There will be a test at the end of term and five assessed problem sheets throughout the term. Three revision lectures will also be given in the summer term.


25 per cent Coursework Mark, 75 per cent Exam Mark

Other details

Information about coursework deadlines can be found in the "Coursework and Exams" section of the Current Students, Information for Students Maths web pages: Coursework and Test Information

Exam Duration and Period

1:30 during Summer Examination period.

Other information

'A' level Maths or equivalent normally required. Available independently to Socrates/IP students spending all relevant terms at Essex.


  • Recommended Reading:
  • J. Gilbert; C. Jordan, Guide2 Mathematical Methods, Palgrave Macmillan, 2002
  • R. Adams and C. Essex, Calculus (A complete course), Pearson

Further information