Module Details

BS934-7-AU-CO: Gene Technology And Synthetic Biology

Year: 2016/17
Department: Biological Sciences (School of)
Essex credit: 30
ECTS credit: 15
Available to Study Abroad / Exchange Students: Yes
Full Year Module Available to Study Abroad / Exchange Students for a Single Term: No
Outside Option: No

Supervisor: Prof Phil Mullineaux
Teaching Staff: Prof Phil Mullineaux, Dr Terry McGenity, Dr Metodi Metodiev, Dr Uli Bechtold, Dr Ralf Zwacka
Contact details: School Graduate Office, email: bsgradtaught (Non essex users should add to create a full email address)

Module is taught during the following terms
Autumn Spring Summer

Module Description

The development of techniques to manipulate and analyse nucleic acids has revolutionised the study of biology and provided the key driver for the massive expansion in biotechnology. Subsequent to this has been the emergence of the fields of genomics, proteomics, and bioinformatics that are now the focus of the most exciting new advances in biotechnology and have led to the emerging discipline of synthetic biology. Synthetic biology is an emerging area of biotechnology research that can be broadly described as the design and construction of novel artificial biological pathways, organisms or devices, or the re-design of existing natural biological systems (Royal Society, UK).

The Basic Gene Technology part of the module consists of a series of 9 lectures and 6 linked practicals examining the isolation of DNA and RNA, gene cloning, the many applications of the polymerase chain reaction (PCR), the construction and screening of gene and cDNA libraries, directed mutagenesis techniques, transformation of key organisms and basic lab-based sequencing. In addition, DNA fingerprinting methodologies, selection and hybridisation methods will be studied. Finally, the use of reporter genes to measure non-invasively the expression of genes, to set up novel mutant screens and to determine the levels of small molecules in the living cell will be discussed. The Synthetic Biology part of the module (3 lectures) will provide an introduction to the key design concepts in Synthetic Biology which underpin the methods used for rapidly building new biosynthetic pathways using advanced recombinant DNA technology, the construction of novel coding sequences and the synthesis of novel genes and the first synthetic organism. The final 3 lectures will be concerned with some of the underpinning technologies in genomics with special emphasis on next generation sequencing as applied to transcriptomics and chromatin immune precipitation techniques.

All of this is underpinned by a series of practical classes which jointly show how a synthetic hormone -ligand interaction can be constructed to work in yeast. The practicals are designed to provide first-hand experience of key procedures and are coordinated with the first 9 lectures of the course to reinforce the theory.

This module aims to (re)introduce you to the key techniques and skills in gene technology and then to build on this knowledge to develop an understanding and appreciation of the rapidly developing field of synthetic biology, and to equip you with some key methods in gene manipulation.

Learning Outcomes
To pass this module, students will need to be able to:
1. Understand how manipulation of nucleic acids has been central to the developments made in biotechnology and biology as a whole;
2. Describe the major tools used in gene technology and understand how such tools are used;
3. Explain how molecular techniques can be used in combination to explore biological questions;
4. Understand the importance of gene technology and in the rapidly developing field of synthetic biology;
5. Understand the applications of genome scale methods for studying gene expression in biotechnology and molecular medicine;
6. Demonstrate practical competence in key gene manipulation techniques;
7. Develop a range of key skills including information acquisition from web-based and library sources, self-directed learning, critical analysis of data, numeracy, writing and presentation of scientific reports.

Learning and Teaching Methods

Lectures: 15 x 1 hour
Practicals: 6 totalling 40 hours


60 per cent Coursework Mark, 40 per cent Exam Mark


One set of pre-practical asessment tests to be conducted before and in preparation for each of practicals 2-6 (10%) Five (5) post-practical assignments, covering practicals 2-6, designed to stimulate your self-directed learning, assess your understanding of the practicals and accompanying lectures, develop your skills in critical analysis of data and to give you experience of writing in a concise scientific style (50%).

Other details

One exam consisting of a DAI and a choice of one out of 3 structured essays (40%).

Exam Duration and Period

3:00 during Christmas vacation.


  • Essential:
  • Glick, B.R., Pasternak, J.J. & Paten C.L. (2010) 'Molecular Biotechnology -Principles and Applications of Recombinant DNA' 4th edition, American Society of Microbiology.
  • Primrose, S.B. and Twyman, R.M. (2009) Principles of Gene Manipulation and Genomes, 8th edition, Wiley-Blackwell.
  • Freemont P.S. (2012) Synthetic Biology - A Primer (1st Edition), Imperial College Press (World Scientific)
  • Recommended:
  • Brown, T.A. (2006) 'Genomes'. Taylor Francis Publishers
  • Strachan, T. & Read, A.P. (2010) 'Human Molecular Genetics' Garland Publishing
  • Ratledge, C & and Kristianson, B (2006) Basic Biotechnology 3rd Edition Cambridge University Press.
  • Slater, N, Scott W & Fowler M.R. (2008) Plant biotechnology: the genetic manipulation of plants Oxford University Press

Further information