Courses

  1. home
  2. courses
  3. msc advanced communications systems details

MSc Advanced Communications Systems

Why we're great

  • Acquire robust software development skills through a number of learning methods
  • Through laboratory work explore the fundamentals of signals – electronic, optical and radio
  • Your degree is accredited by the Institution of Engineering and Technology – your first stage towards professional registration as a Chartered Engineer

Course options2017-18

Duration: 1 year
Start month: October
Location: Colchester Campus
Based in: Computer Science and Electronic Engineering (School of)
Fee (Home/EU): £7,200
Fee (International): £14,950
Fees will increase for each academic year of study.
PGT fees information

Duration: 2 years
Start month: October
Location: Colchester Campus
Based in: Computer Science and Electronic Engineering (School of)
Fee (Home/EU): £3,600
Fee (International): £7,475
Fees will increase for each academic year of study.
PGT fees information

Course enquiries

Telephone 01206 872719
Email pgadmit@essex.ac.uk

Delicious Save this on Delicious

About the course

Our graduates work in major telecommunications companies around the world. We have run this course for over 25 years and, in that time, educated over a thousand communications specialists.

Starting from the concept of a signal, we cover the fundamentals of how signals are acquired, processed and transmitted over a wide range of media — electronic, optical and radio. Our laboratory work shows how these principles are put into practice and your software development skills are improved through a series of lectures, exercises and assignments.

Building on this, we explore a number of state-of-the-art topics in detail, including:

  • Modern digital transmission systems
  • Wireless communication systems
  • Computer security and cryptography
  • Complex electronic circuits
  • Networked systems

Our School is a community of scholars leading the way in technological research and development. Today’s telecommunications engineers are creative people who are focused and committed, yet restless and experimental. We are home to many of the world’s top engineers, and our work is driven by creativity and imagination as well as technical excellence.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

“As an international student, I found it very easy to adjust to the new lifestyle as everyone is very friendly and helpful. My Masters degree has provided me with a very strong platform for career development, opening new research horizons and pathways that will help me achieve my goals.”

Naveed Syed, MSc Telecommunications and Information Systems

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

We have been one of the leading electronics departments in the country throughout our history, and in recent years, our prolific research staff have contributed to some major breakthroughs.

We invented the world's first telephone-based system for deaf people to communicate with each other in 1981, with cameras and display devices that were able to work within the limited telephone bandwidth. Our academics have also invented a streamlined protocol system for worldwide high speed optical communications.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.

  • We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
  • All computers run either Windows 7 or are dual boot with Linux
  • Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
  • Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
  • We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:

  • Elitecore Technologies Ltd
  • Juniper Networks
  • Cisco Systems
  • Incendio Technologies

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Previous Next

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

For many of our courses you’ll have a wide range of optional modules to choose from – those listed in this example structure are, in many instances, just a selection of those available. Our Programme Specification gives more detail about the structure available to our current postgraduate students, including details of all optional modules.

Year 1

This module provides a mathematical foundation for the study of communication systems and understanding their operation. It covers at depth the relevant mathematical concepts, such as Fourier transforms, theory of probability and stochastic processes and noise, as well as fundamentals of information theory and coding. The key feature of the module is that all relevant mathematical concepts are considered together with practical demonstration of their direct applications to the related area of electronic engineering and communication. In order to provide both good theoretical knowledge and strong applied skills, in addition to the lectures the module is supported by the problem solving classes. The module uses these theoretical tools to examine the operation of modern communication systems, such as analogue and digital signal processing and applications of information theory to data coding. The module also covers analysis of fundamental performance bounds, and identifies how close commercially important systems are to these bounds.

View 'Theory of Signals and Systems' on our Module Directory

In modern digital communications voice, image and data are integrated. The module will provide an understanding of the principles and practices of modern digital transmission systems. After covering the essentials of electronic communications, the module examines and compares cable, broadcast, satellite and mobile communications systems.

View 'Digital Communications' on our Module Directory

This module provides an introduction to the architecture and services of modern telecommunication networks. A general introduction illustrates the major features of a network, how they interact and introduce the concept of an intelligent network. Switching is an essential requirement and the ideas behind circuit, packet and cell switching are presented. The basics of the TCP/IP protocol suite are described. Optical transmission and networking, key features for future networks, are discussed. To present the main concepts involved in current and future telecommunication and information networks, the concepts presented will be supported by the other core courses.

View 'Networking Principles' on our Module Directory

What are the main challenges when using wireless connections? And what are the higher-layer techniques for exploiting wireless physical links? Study the technology underlying current and future wireless communications systems. Understand the concepts of radio transmissions and the different types of multiple access techniques.

View 'Mobile Communications' on our Module Directory

This laboratory introduces students to the practical aspects of communications modulation and transmission. A number of practical experiments are available, from which students choose those that fit most closely with their interests. They are designed to complement and enhance the material presented in the core course lectures by providing hands-on experience of the principles and processes described. The topics available include: microwave technology, frequency modulation, pulse code modulation, baseband digital transmission, optical fibre measurement,quantization and sampling, optical data transmission, 60 GHZ video transmission

View 'Communications Laboratory' on our Module Directory

Mathematics is a tool used in many fields of research, and this module introduces students to techniques and ways of thinking designed to enable them to carry out their own mathematical investigations, or to apply mathematical ideas to an investigation of their own (typically for most students on this module, this will be their Dissertation project). We use the industry standard mathematical software Matlab, although the techniques introduced can also be applied using other software, and we study a range of techniques for numerical computation and processing of data.

View 'Mathematical Research Techniques Using Matlab' on our Module Directory

What fascinates you? Apply your learning in computer science or engineering to solve a problem. Design, implement and evaluate a solution, producing a dissertation on your investigation and giving an oral presentation of your work. Test your knowledge, while gaining practical experience and building your project management skills.

View 'MSc Project and Dissertation' on our Module Directory

This module aims to prepare students for conducting an independent research project leading to a dissertation and to provide them with an appreciation of research and business skills related to their professional career. As a precursor to their project students, individually select an area of Computer Science, or Electronic Engineering, or Computational Finance and perform the necessary background research to define a topic and prepare a project proposal under the guidance of a supervisor. The module guides them by a) introducing common research methods b) creating an understanding of basic statistics for describing and making conclusions from data c) helping to write a strong proposal including learning how to perform literature search and evaluation and d) giving an in-depth view into the business enterprise, financial and management accounting and investment appraisal.

View 'Professional Practice and Research Methodology' on our Module Directory

We are living in a world of multiple networking technologies, either wired or wireless. There is a need for these network technologies to converge in order to provide seamless services to end users. This course is to look into the fundamentals towards this goal. This course will begin with the motivation behind network and service convergence and then introduce the network architectures that are being deployed today. Then quality of service (QoS) metrics such as delay, jitter, packet loss, etc. and QoS mechanisms will be introduced. The course will go on into various types of service and network convergences covering wireless + wireless convergence and wired + wireless convergence. The course will then describe fundamentals of a key issue that is common for any type of convergence: mobility. Finally the course will finish by introducing a clean-slate future Internet technology called ICN (Information Centric Networking).

View 'Converged Networks and Services (optional)' on our Module Directory

Acquire critical and transferable skills associated with the creation and growth of new business ventures. You focus on the development process from start up to early stage growth of new ventures, new small businesses spin offs from large firms, and especially innovative, technology-based firms. You study opportunity identification, self-efficacy, ideas generation, bricolage and bootstrapping, developing business models, networking, marketing, and finance.

View 'Creating and Growing a New Business Venture (optional)' on our Module Directory

This module provides first-hand experience of the design simulation and production of complex electronic circuits. A word specification is provided for a consumer electronics device for which a prototype is designed using reference and first principles. The circuit is then simulated and tested in Multisim to verify operation. Once satisfactory, a hardware prototype is developed on a prototype medium e.g. breadboard and tested in real-world conditions. Then using PCB design software, a PCB is designed and populated to produce the final product. The module has a large emphasis on the practical with a lighter emphasis on the theoretical.

View 'Electronic System Design & Integration' on our Module Directory

This course gives an introduction to computer security and cryptography, and then goes on to consider security as it relates to a single, network connected, computer. Introductory material is independent of any operating system but the consideration of tools will focus on those available for Linux, partly because its open-source nature facilitates this and partly because it is widely used on server systems. The introduction to cryptography will be used to consider its use in encryption and authentication.

View 'Computer Security' on our Module Directory

Teaching

  • Courses provide a thorough and up-to-date knowledge of the theory, methods and applications of computer science
  • Core components combined with optional modules, to enable you to gain either in-depth specialisation or a breadth of understanding
  • Our postgraduates are encouraged to attend conferences and seminars, as well as engage with the wider research community

Assessment

  • Courses are assessed on the results of your written examinations, together with continual assessments of your practical work and coursework

Dissertation

  • Your research project allows you to focus in depth on your chosen topic from April
  • Close supervision by faculty staff

Previous Next

Qualifications

UK entry requirements

We will consider applications with an overall grade of 2:2 and above in a subject such as electronic engineering, physics, mathematics or another engineering discipline with an equivalent mathematics background. Applicants from undergraduate courses who do not have a substantial covering of engineering mathematics should contact us.

International and EU entry requirements

We accept a wide range of qualifications from applicants studying in the EU and other countries. Email pgadmit@essex.ac.uk for further details about the qualifications we accept. Include information in your email about the undergraduate qualification you have already completed or are currently taking.

Previous Next

Applying

You can apply for our postgraduate courses online. You’ll need to provide us with your academic qualifications, as well as supporting documents such as transcripts, English language qualifications and certificates. You can find a list of necessary documents online, but please note we won’t be able to process your application until we have everything we need.

There is no application deadline but we recommend that you apply before 1 July for our taught courses starting in October. We aim to respond to applications within two weeks. If we are able to offer you a place, you will be contacted via email.

Visit us

Open days

We hold postgraduate events in February/March and November, and open days for all our applicants throughout the year. Our Colchester Campus events are a great way to find out more about studying at Essex, and give you the chance to:

  • tour our campus and accommodation
  • find out answers to your questions about our courses, student finance, graduate employability, student support and more
  • meet our students and staff

If the dates of our organised events aren’t suitable for you, feel free to get in touch by emailing tours@essex.ac.uk and we’ll arrange an individual campus tour for you.

Virtual tours

If you live too far away to come to Essex (or have a busy lifestyle), no problem. Our 360 degree virtual tour allows you to explore the Colchester Campus from the comfort of your home. Check out our accommodation options, facilities and social spaces.

Exhibitions

Our staff travel the world to speak to people about the courses on offer at Essex. Take a look at our list of exhibition dates to see if we’ll be near you in the future.

Previous Next


The University makes every effort to ensure that this information on its course finder is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include a change of law or regulatory requirements, industrial action, lack of demand, departure of key personnel, change in government policy, or withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep prospective students informed appropriately by updating our programme specifications.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.