Courses

  1. home
  2. courses
  3. msc embedded systems details

MSc Embedded Systems

Why we're great

  • Develop practical skills in our well- equipped laboratories, drawing from our links with industrial partners
  • Acquire the advanced knowledge and skills needed to work in this major growth industry
  • Your degree is accredited by the Institution of Engineering and Technology – your first stage towards professional registration as a Chartered Engineer

Course options2017-18

Duration: 1 year
Start month: October
Location: Colchester Campus
Based in: Computer Science and Electronic Engineering (School of)
Fee (Home/EU): £7,200
Fee (International): £14,950
Fees will increase for each academic year of study.
PGT fees information

Duration: 2 years
Start month: October
Location: Colchester Campus
Based in: Computer Science and Electronic Engineering (School of)
Fee (Home/EU): £3,600
Fee (International): £7,475
Fees will increase for each academic year of study.
PGT fees information

Course enquiries

Telephone 01206 872719
Email pgadmit@essex.ac.uk

Delicious Save this on Delicious

About the course

Embedded system technology underlies the ever more capable electronic and computing systems that we use in our daily lives, ranging from cars and mobile telephones to washing machines and aeroplanes.

This major growth area has a large and increasing industry demand for engineers and computer scientists who possess in-depth expertise in embedded systems, and our course equips you with the advanced knowledge and skills to work in all aspects of this area.

You develop practical skills in the design, programming and interfacing of embedded processors, as well as an understanding of current applications, technological trends and their potential impact on systems of the future. We have an international reputation for research in this field, so maintain well equipped laboratories through our links with industrial partners.

This enables us to offer you instruction in a wide range of topics including:

  • Hardware/software co-design
  • Task-oriented programming
  • Systems integration
  • Middleware
  • Networking
  • Human-computer interfaces
  • Embedded agents and the embedded internet

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

Our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Our impressive external research funding stands at over £4 million and we participate in a number of EU initiatives and undertake projects under contract to many outside bodies, including government and industrial organisations.

In recent years we have attracted many highly active research staff and we are conducting world-leading research in areas such as evolutionary computation, brain-computer interfacing, intelligent inhabited environments and financial forecasting.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.

  • We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
  • All computers run either Windows 7 or are dual boot with Linux
  • Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
  • Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
  • We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

Our recent graduates have progressed to a variety of senior positions in industry and academia. Some of the companies and organisations where our former graduates are now employed include:

  • Electronic Data Systems
  • Pfizer Pharmaceuticals
  • Bank of Mexico
  • Visa International
  • Hyperknowledge (Cambridge)
  • Hellenic Air Force
  • ICSS (Beijing)
  • United Microelectronic Corporation (Taiwan)

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Previous Next

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

For many of our courses you’ll have a wide range of optional modules to choose from – those listed in this example structure are, in many instances, just a selection of those available. Our Programme Specification gives more detail about the structure available to our current postgraduate students, including details of all optional modules.

Year 1

What fascinates you? Apply your learning in computer science or engineering to solve a problem. Design, implement and evaluate a solution, producing a dissertation on your investigation and giving an oral presentation of your work. Test your knowledge, while gaining practical experience and building your project management skills.

View 'MSc Project and Dissertation' on our Module Directory

Embedded systems have become more pervasive and powerful to take on truly sophisticated functions in recent years. When facing with the rapid technical updating and complicated market requirements, the designers have to use advanced design techniques to deal with the complexity. In this module, you will gain the experience of full embedded system design process, and the fundamental knowledge on hardware components and real time programming. The hand-on practice helps your understanding of embedded system design process.

View 'Advanced Embedded Systems Design' on our Module Directory

This module aims at introducing students to digital processing techniques, including sampling and analysis of digital signals, signal conditioning, the design of digital filters, and digital signal processing applications. Discrete signals and systems are studied, with an emphasis on the Fourier and Z-transforms that are necessary for the analysis of discrete signals and design of digital filters.

View 'Digital Signal Processing' on our Module Directory

Teamwork skills are essential for employability. The aim of this module is to provide students with the opportunity to apply their specialised knowledge to a realistic problem and gain practical experience of the processes involved in the team-based production of software. Wherever possible, teams are organised on the basis of shared interest, and the problem is designed to exercise their understanding of their area of specialised study. Starting from an outline description of a realistic problem, each team is required to develop a fully implemented software solution using appropriate engineering and project management techniques.

View 'Group Project' on our Module Directory

This module aims to prepare students for conducting an independent research project leading to a dissertation and to provide them with an appreciation of research and business skills related to their professional career. As a precursor to their project students, individually select an area of Computer Science, or Electronic Engineering, or Computational Finance and perform the necessary background research to define a topic and prepare a project proposal under the guidance of a supervisor. The module guides them by a) introducing common research methods b) creating an understanding of basic statistics for describing and making conclusions from data c) helping to write a strong proposal including learning how to perform literature search and evaluation and d) giving an in-depth view into the business enterprise, financial and management accounting and investment appraisal.

View 'Professional Practice and Research Methodology' on our Module Directory

Wish to design, program and evaluate embedded systems from software specification to hardware implementation? Study the techniques to develop software for embedded systems and robotics. Examine performance needs and the key issues in designing real-time software for embedded systems in real-world applications. Understand the main techniques of real-time programming.

View 'Programming Embedded Systems' on our Module Directory

Acquire critical and transferable skills associated with the creation and growth of new business ventures. You focus on the development process from start up to early stage growth of new ventures, new small businesses spin offs from large firms, and especially innovative, technology-based firms. You study opportunity identification, self-efficacy, ideas generation, bricolage and bootstrapping, developing business models, networking, marketing, and finance.

View 'Creating and Growing a New Business Venture (optional)' on our Module Directory

This module provides first-hand experience of the design simulation and production of complex electronic circuits. A word specification is provided for a consumer electronics device for which a prototype is designed using reference and first principles. The circuit is then simulated and tested in Multisim to verify operation. Once satisfactory, a hardware prototype is developed on a prototype medium e.g. breadboard and tested in real-world conditions. Then using PCB design software, a PCB is designed and populated to produce the final product. The module has a large emphasis on the practical with a lighter emphasis on the theoretical.

View 'Electronic System Design & Integration (optional)' on our Module Directory

Digital systems are in virtually all devices we interact with: from consumer electronics, to biomedical applications and automotive industry. Digital technology is evolving so rapidly that engineers need rapid-prototyping software and hardware tools that allow them to explore and test an implementation before moving to the production. In this module, learners will gain fundamental circuit design and verification skills by using an industry-standard hardware description language (VHDL) to program field-programmable gate arrays (FPGAs). The learning process is experience-oriented so that hands-on practice in designing embedded systems as well as theoretical background is acquired during the course.

View 'High Level Logic Design (optional)' on our Module Directory

This module gives an introduction to intelligent systems and robotics. It goes on to consider the essential hardware for sensing and manipulating the real world, and their properties and characteristics. The programming of intelligent systems and real-world robots are explored in the context of localisation, mapping, and fuzzy logic control.

View 'Intelligent Systems and Robotics (optional)' on our Module Directory

This module introduces the Internet and computer networking from both a theoretical and practical perspective. It is the module where computers are merging with communications to create a fundamentally new system  - the World Wide Web. The design, organisation, and operation of networks and the Internet are the subject of this module. The areas which are covered in the module are at the heart of modern network-connected world. In brief - the module will provide you as a future computer network specialist with a comprehensive knowledge of design, organisation, and operating principles of modern computer networks. The module first examines the architecture and operation of the Internet protocols (IPs), and shows how information is processed and routed across the Internet. The operation and configuration of routers is discussed alongside the details of protocol operation. The module then discusses the rationale behind the next generation internet protocol IPv6, in particular regarding addressing architecture, header functions, and novel protocol concepts. A comparison between the current IPv4 and the future IPv6 protocols and transition to the next generation protocol are discussed in depth. The function and implementation of its main support protocols are also covered. The application of these new networking ideas is illustrated by the application of IPv6 to problems in network layer services, especially security, and the Internet of Things (IoTs).  In order to provide both good theoretical knowledge and strong applied skills, in addition to the lectures the module is supported by the problem solving classes.

View 'IP Networking and Applications (optional)' on our Module Directory

This module covers a range of Artificial Intelligence techniques employed in games, and teaches how games are and can be used for research in Artificial Intelligence. The module explores algorithms for creating agents that play classical board games (such as chess or checkers) and real-time games (Mario or PacMan), including single agents able to play multiple games. The course also covers Procedural Content Generation, and explores the techniques used to simulate intelligence in the latest videogames.

View 'Game Artificial Intelligence (optional)' on our Module Directory

Teaching

  • Courses provide a thorough and up-to-date knowledge of the theory, methods and applications of computer science
  • Core components combined with optional modules, to enable you to gain either in-depth specialisation or a breadth of understanding
  • Our postgraduates are encouraged to attend conferences and seminars, as well as engage with the wider research community

Assessment

  • Courses are assessed on the results of your written examinations, together with continual assessments of your practical work and coursework

Dissertation

  • Your research project allows you to focus in depth on your chosen topic from April
  • Close supervision by faculty staff

Previous Next

Qualifications

UK entry requirements

We will consider applications with an overall grade of 2:2 and above.

International and EU entry requirements

We accept a wide range of qualifications from applicants studying in the EU and other countries. Email pgadmit@essex.ac.uk for further details about the qualifications we accept. Include information in your email about the undergraduate qualification you have already completed or are currently taking.

IELTS entry requirements

IELTS 6.0 overall with a minimum component score of 5.5

If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.

Previous Next

Visit us

Open days

We hold postgraduate events in February/March and November, and open days for all our applicants throughout the year. Our Colchester Campus events are a great way to find out more about studying at Essex, and give you the chance to:

  • tour our campus and accommodation
  • find out answers to your questions about our courses, student finance, graduate employability, student support and more
  • meet our students and staff

If the dates of our organised events aren’t suitable for you, feel free to get in touch by emailing tours@essex.ac.uk and we’ll arrange an individual campus tour for you.

Virtual tours

If you live too far away to come to Essex (or have a busy lifestyle), no problem. Our 360 degree virtual tour allows you to explore the Colchester Campus from the comfort of your home. Check out our accommodation options, facilities and social spaces.

Exhibitions

Our staff travel the world to speak to people about the courses on offer at Essex. Take a look at our list of exhibition dates to see if we’ll be near you in the future.

Applying

You can apply for our postgraduate courses online. You’ll need to provide us with your academic qualifications, as well as supporting documents such as transcripts, English language qualifications and certificates. You can find a list of necessary documents online, but please note we won’t be able to process your application until we have everything we need.

There is no application deadline but we recommend that you apply before 1 July for our taught courses starting in October. We aim to respond to applications within two weeks. If we are able to offer you a place, you will be contacted via email.

Previous Next


Although great care is taken in compiling our course details, they are intended for the general guidance of prospective students only. The University reserves the right to make variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses, if such action is reasonably considered to be necessary by the University.

The full procedures, rules and regulations of the University are set out in the Charter, Statues and Ordinances and in the University Regulations, Policy and Procedures.